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Throughout life, we learn the rules of social behavior by observing others, by
exposure to diverse social contexts, and, in some cases, through targeted intervention.
More than learning the rules and expectations on how to behave, social regulation
involves the dynamic, real-time coordination of one’s internal states and outward
behaviors to meet those expectations. Regulation becomes challenging when internal
states conflict with external demands, such as in moments of heightened emotion,
sensory overload, or social ambiguity. In certain contexts (such as isolation during a
global pandemic) or for some individuals (such as those with autism), social regulation
can be difficult to achieve and even harder to sustain.

This dissertation positions robots as tools to support the learning of social regu-
lation. Robots are embodied platforms and thus offer unique potential for enabling
on-demand, physically co-present interactions. Although the field of robotics has
traditionally focused on reliability and precision of motion to achieve physical task
assistance, a growing body of literature demonstrates that humans often perceive and
respond to robots as social entities. Building on this insight, we explored how robots
can provide social value and assistance.

To develop such socially assistive robots, we had to overcome significant tech-
nical challenges and rethink the prevailing norms in the field. True social learning
unfolds over time and requires exposure to novel real-world situations that test the
relevance and adaptability of learned strategies. However, much of what we know
about human-robot interaction has emerged from experimental studies in controlled
laboratory or clinical environments over short timescales and typically focused on
interactions between a single robot and a neurotypical adult. For robots to effec-
tively support social regulation learning, they must operate reliably in unstructured,
everyday environments; sustain long-term, repeated engagement with users of vari-
ous cognitive profiles and social needs; adapt to evolving user behavior and progress;
and respond in ways that are not only effective, but also socially appropriate and
safe. Every component of this requires overcoming significant computational and
non-computational challenges.

Across five core studies presented in this dissertation, we describe our design, de-



velopment, and deployment of robots that achieve this. While establishing feasibility
is a necessary first step in ensuring that a robot operates safely, consistently, and ac-
ceptably, our work also examines whether these robots yield meaningful therapeutic
outcomes. All experiments were conducted outside of laboratory settings, involved
interactions spanning several days to a full month, and took place under challeng-
ing real-world conditions, including deployments in participants’ homes during the
COVID-19 lockdown. FEach study was carefully designed to meet the needs of a
highly specialized and protected user population. Collectively, these studies demon-
strate the value of robots for encouraging a wide range of regulation skills, including
attention sharing, turn-taking, conversational reciprocity, resiliency to interruptions,
deep breathing, and emotional de-escalation.

This dissertation presents the first robots developed specifically for adults with
autism. It includes one of the only robotic studies to demonstrate continuous learning
progression linked to clinical measures of therapeutic efficacy. In addition, it includes
the first use of foundation models to deliver unscripted and improvised therapy. It
also presents the first robot to address behavioral de-escalation in public spaces while

remaining agnostic to users’ age or diagnostic profile.
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CHAPTER 1

Introduction

In moments of distress or dysfunction, regulation often begins not with explana-
tion, but with simple behaviors: a pause before interrupting, a moment of sus-
tained eye contact, a deep breath, a quick scan around the room. Humans em-
ploy these behaviors, sometimes without conscious awareness, to achieve emotional
equilibrium, reinforce social norms and expectations, or maintain connection [9]. As
micro-interventions, these behaviors preserve our social coherence, reinforce our psy-
chological autonomy and resilience, and uphold our overall well-being [10].

Sustained regulation, however, relies on strategies that are learned over time—
either implicitly, through repeated exposure to diverse social situations [11], or explic-
itly, through therapeutic instruction, structured support, or reflective practice [12,13].
When these mechanisms for learning are disrupted or lacking, regulation becomes dif-
ficult to achieve and harder still to maintain. For instance, a child who consistently
observes others managing frustration effectively during peer conflicts may gradually
internalize those strategies and apply them in similar situations. In contrast, a child
who lacks this exposure, receives little explicit coaching, or has a neurodevelopmental
condition that complicates learning, may struggle to develop comparable regulation
strategies on their own.

We further observe this in diverse contexts and populations, for example, a young
child struggling to navigate peer pressure and emotional volatility without mature
coping tools [14]; an adult with autism who adapts to the cognitive demands of
nuanced social interpretation in real time [15]; a senior with progressive dementia
facing disorientation and identity loss [16]; and a caregiver operating under chronic
stress with limited time for emotional recovery [17]. In each case, the capacity to
stay regulated first depends on learning reliable strategies and then on being able to

access and effectively deploy them when needed.



1.1 Potential of Robotics for Social Regulation

Robots hold significant potential as tools for supporting human social and cogni-
tive growth by improving access to on-demand, personalized, socially situated, and
physically co-present interventions [18]. Where the field of robotics has traditionally
focused on the reliability and precision of motion to achieve functional task assis-
tance, socially assistive robotics (SAR) has explored how robots can provide social
value and assistance to people [19]. For example, SAR research has shown increased
engagement, improved attention regulation, and more appropriate social behavior
such as joint attention and spontaneous imitation when robots are part of the inter-
action [20,21].

The significant advances in understanding social interactions between humans and
robots have predominantly emerged from experimental studies in controlled labora-
tory or clinical environments, typically over short timescales and focused on dyadic
interactions between a single human—most often a neurotypical adult—and a sin-
gle robot (as reviewed in [22]). Although such controlled studies allow researchers
to isolate specific interaction parameters, these approaches fail to capture the com-
plexity, sustainability, and contextual relevance of long-term use in the real world.
In extended interactions, users are habituated to novelty, expectations evolve, and
the utility of a system is increasingly judged by its ability to provide meaningful,
contextually appropriate support. Meeting these evolving expectations places new
technical and interactional demands on SARs. These systems must be resilient to
environmental variability, operate reliably in dynamic real-world settings, interpret
and respond to human social signals, function autonomously without the supervision
of the researcher, and sustain relevant support for individuals over time.

These mirror the conditions necessary for sustained regulation. True social learn-
ing does not unfold within a single 30-minute to an hour-long study session; instead,
it develops over days to months, through exposure to novel, real-world situations
that test the ongoing relevance and adaptability of learned strategies. It occurs be-
yond designated “therapy time,” without constant supervision or reinforcement, and
accommodates diverse cognitive profiles as well as evolving user behaviors and needs.

This dissertation presents the design, development, and deployment of SAR sys-
tems that support sustained social regulation. While much of the literature focuses on
emotional regulation—the processes by which individuals modulate their emotional
states to meet situational demands—this work adopts the term social regulation to

emphasize the dynamic, interpersonal nature of regulation within social interactions.



In essence, it is the social learning of emotion regulation. We build upon recognized
definitions of emotional regulation (e.g. [12,23]), but highlight regulation as a socially
situated and interactionally contingent process. Learning to regulate involves, for ex-
ample, developing skills for managing frustration when interrupted during a focused
task; negotiating attention and turn-taking during cooperative activities; appropri-
ately initiating or inhibiting actions toward others when emotionally overwhelmed;
and adapting behavior to appropriately respond to the dynamic cues of others and
the surrounding environment.

To delineate the goals of our work, we distinguish these related concepts as follows:

Emotion Regulation (General). This is the broad ability to monitor, evalu-
ate, and modify one’s emotional reactions across contexts [12,23]. It may occur
in solitude (e.g., calming oneself during private stress) or in nonsocial situations
(e.g., managing frustration while solving a math problem). At its core, it is an

intrapersonal process.

Emotion Regulation in Social Situations. This is the regulation of emo-
tions specifically in the presence of others. While still focused on internal
management (e.g., not crying during an argument, not showing visible anger
in a meeting), the strategies are constrained by social context and expecta-
tions [12,14,24].

Social Learning of Emotion Regulation Skills (Social Regulation).
More than regulating in social contexts, this refers to how regulation skills are
acquired and refined through social interaction. It involves observation, model-
ing, feedback, and practice within reciprocal exchanges, where success depends
not only on internal balance but also on social appropriateness, coordination,
and relationship maintenance. We provide opportunities for the social learning

of emotional regulation skills by building and deploying social robots.

These distinctions are critical to this dissertation, as they emphasize that regula-
tion skills are learned and sustained through interaction (e.g., turn-taking, reciprocity,
responsiveness). They also clarify that our SAR studies are not merely aimed at teach-
ing private coping strategies, but at fostering socially embedded skillsets. Finally,
these definitions highlight how our contributions diverge from much of the psychol-
ogy literature on emotion regulation, which has predominantly examined emotional
regulation as an intrapersonal process in solitary laboratory tasks (e.g., reappraisal

during picture viewing; [12,25-28]). By contrast, the present work frames regulation
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as a socially situated, interactionally contingent skill that is learned and practiced
within dynamic exchanges.

The studies compiled in this dissertation begin by examining the architectural and
interactional design of robots that function with the necessary intelligence to operate
autonomously, in dynamic, unstructured environments, alongside humans of diverse
cognitive profiles and social needs. Then, we implement these design choices to create
extended (spanning weeks or months), “in the wild” (e.g., in homes, or public schools)
robot-directed interventions that support learning regulation strategies (e.g., build-
ing resilience to interruptions, mitigating social isolation during a global pandemic
lockdown, or managing emotional de-escalation in a public setting) for understud-
ied user populations (e.g., adults with autism, persons with multiple co-occurring

neurodevelopmental conditions, young children receiving specialized education).

1.2 Why This Work is Challenging

Developing these robots entails a range of computational and noncomputational chal-

lenges. In the following, we list a few areas where both types of challenge converge.

1. Heterogeneity of User Profiles. Humans differ widely in their develop-
mental trajectories, interaction styles, personalities, preferences, and cognitive
functioning—especially within highly heterogeneous populations such as indi-
viduals with autism. This variability presents both a design and modeling chal-
lenge: robots must operate flexibly without relying on uniform behavioral base-
lines or one-size-fits-all interaction patterns. Our approach to this is reflected
in iterative, co-design methodologies, through which we collaborate directly
with specialized populations to understand their needs and inform design ob-
jectives (e.g., [29-31]). In practice, we developed systems that operate without
requiring individualized pre-training, instead adapting though behavior trees or
symbolic overlays that adjust to observed user behavior in real-time (e.g., [32]),
robust default strategies to function reasonably across a wide range of behaviors
(e.g., [32-34]), and guardrails that constrain generative outputs to ensure safety

and appropriateness in novel, unanticipated scenarios (e.g., [32,33]).

2. Implicit Nature of Regulation Skills. Many social regulation behaviors
(e.g., eye contact, turn-taking) are learned implicitly and vary contextually.
Because these behaviors are not governed by fixed rules and are rarely taught

through explicit instruction, they are not easily scripted or pre-programmed.
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Systems that rely on rigid rule-based approaches can produce interactions that
are brittle, unnatural, or short-lived. To address this, our robots must first
be capable of simulating or modeling the target behavior, either to convey its
appropriate expression or to effectively prompt it in users (e.g., [29, 30, 35]).
They must also recognize when user behaviors align with desired outcomes in
real time (e.g., [30,31]), and crucially, infer when and how to respond, reinforce,

or give feedback to support continued learning and engagement (e.g., [30,31,35]).

. Invisible Internal States. Social regulation depends on internal emotional
and cognitive states (e.g., frustration, anxiety, attention) that are not directly
observable. Inference must occur through noisy proxies like gaze, latency, speech
patterns, or physiological data—each with limited reliability and especially frag-
ile under real-world or individual user variation. While extensive research has
focused on developing reliable off-the-shelf models for automated user behavior
detection, we frequently encountered limitations when applying these models
to our specific user populations and deployment contexts. For example, gaze
estimation models trained on neurotypical adults often failed to generalize to
children with autism, whose gaze behavior may be atypical (e.g., [35]). In-
home detection systems struggled with false positives due to human-like faces
on televisions, toys, or images (e.g., [29,30]). Similarly, speech transcription be-
came unreliable when the robot must distinguish between user-directed speech
and ambient dialogue from other people or media sources (e.g., [34]). In the
absence of reliable off-the-shelf perception models, our systems involve hybrid
approaches that combine lightweight heuristics, contextual rules, and adaptive
thresholds tailored to the deployment environment (e.g., [29-31]). Rather than
always assuming high-confidence detection, we designed interactions to accom-
modate inevitable ambiguity—enabling the robot to use probabilistic reasoning
or strategic deferral to deliver relevant responses even when input signals are

noisy, incomplete, or misleading.

. Temporal Dynamics of Learning. Social regulation unfolds gradually over
weeks or months through repeated exposure, not during brief, single-session
interventions. This extended timescale makes it difficult to isolate causal ef-
fects, assess short-term progress, or capture moment-to-moment learning in-
flections. Accounting for slow and nonlinear learning trajectories contrasts the
brief, highly structured sessions typical of most robotic interventions. As we

reviewed in Chapter 2, the field remains focused on proof-of-concept studies



and feasibility pilots, which tend to prioritize novelty, mere exposure effects, or
initial engagement. In order to support the kind of long-term learning required
for meaningful gains in social regulation, robots must sustain user engagement
over time, move beyond scripted, reactive behaviors toward more proactive and
generative interactions, and detect gradual patterns of change in situ. By de-
ploying systems to operate for multiple days or weeks at a time, we create a
rich testbed for exploring methods to detect user progress in situ and sustain
long-term use (e.g., [29-31,35,36]).

. Social Risk and Sensitivity. Intervening in emotional or interpersonal chal-
lenges is socially high-risk. A robot that offers feedback too early, misreads
intent, appears overly prescriptive, or oversteps personal boundaries risks un-
dermining users’ trust, exacerbating stress, or causing lasting harm. Deter-
mining when and how to respond—not just what to say—requires fine-grained,
real-time modeling of turn-taking, user readiness, and attention. To address
this, robots must be able to infer latent social cues and strategically adjust or
delay their interventions until the context is appropriate. Discerning appro-
priateness is the core challenge: it is rarely a discrete output, and more often
an emergent property shaped by sensitivity to timing, social norms, expecta-
tions, intent, and the ongoing calibration of trust. Our efforts to formalize what
constitutes socially appropriate behaviors—to ultimately enable robots to act
autonomously within those bounds—have resulted in several theoretical and

applied frameworks (e.g., [32-34]).

While much attention in SAR design is devoted to onboarding and engage-
ment, the offboarding process (how a robot exits the user’s life after the in-
tervention ends) is equally important. To holistically address the social risks
that shape interaction and system design, we must recognize that relationships
formed with robots, particularly those embedded in users’ homes over extended
periods, can carry significant emotional weight. In our work, we treat the entire
deployment pipeline—including the introduction of the robot, its physical setup,
in-situ troubleshooting or maintenance, exit strategies, and offboarding—as a

series of essential design considerations (e.g., [29-31]).

. Evaluation of Therapeutic Outcomes. Regulation is a slow and contextu-
ally embedded process, and few standardized measures exist for autonomous,
unsupervised learning in social domains. All of the work presented in this

dissertation features deployments outside controlled laboratory or clinical en-



vironments, occurring instead in users’ everyday spaces, where interactions are
minimally constrained and designed to be highly adaptable and personalized.
As a result, defining a reasonable control condition—against which to evaluate
both the impact of the robot-assisted intervention and baseline behavior in its

absence—is often difficult or infeasible.

In addition to these experimental constraints, measuring long-term transfer,
generalization, and internalization of skills remains a challenge—both conceptu-
ally and methodologically. When systems are deployed for extended, repeated
interactions, they can generate hundreds of hours of interaction data (as shown
in several of our studies, [29-31, 35]), making manual analysis labor-intensive,
error-prone, or altogether impractical. To address these limitations, we explore
methods to detect behavioral change through lightweight or passive observation,

focusing on real-time processing from the system’s point of view.

In summary, for robots to effectively support social regulation learning they must
operate reliably in unstructured, everyday environments; sustain long-term, repeated
engagement with users of various cognitive profiles and social needs; adapt to evolving
user behavior and progress; and respond in ways that are not only effective, but
also socially appropriate and safe. While establishing feasibility—ensuring a system
operates safely, consistently, and acceptably—is a necessary first step, our work must

further assess whether these systems yield meaningful therapeutic outcomes.

1.3 Dissertation Structure & Contributions

The central aim of this dissertation is:

How can we design robotic interventions that support social regulation
learning, and what interactional, technical, and contextual factors enable

their effective deployment?

We begin by critically examining how the field has approached extended human-
robot interactions (Chapter 2). In this review of 120 studies, we operationalize
how the field currently defines “long-term” engagement and how user outcomes are
measured. This chapter highlights opportunities to expand the design scope of SAR
systems, improve their readiness for real-world deployment, and improve methodolog-
ical consistency across studies. These findings inform and motivate the evaluation

strategies adopted in this dissertation.



We then conduct a large-scale review of over 300 studies involving the use of
robots in interventions for Autism Spectrum Disorder (ASD)—mnot only because ASD
has been a popular focus of SAR research, but also because it presents a uniquely
rich testbed for studying the mechanisms of productive social learning (Chapter
3). Core diagnostic features of autism—such as challenges in social communication,
emotional regulation, and adaptive behavior—align closely with the areas where SARs
are hypothesized to provide therapeutic benefit. As such, the ASD literature offers
critical insights into the potential and limitations of SAR-~based interventions. In our
review, we identify foundational trends, common design assumptions, proposed robot-
led pedagogies for teaching valued social skills, and key research gaps that inform the
broader aims of this dissertation.

Chapters 4-9 present a series of human-subject experiments, each contributing
to the design, development, and deployment of a robot-based intervention. These
studies aim to evaluate both the feasibility of system operation and its therapeu-
tic impact. All experiments were conducted under challenging conditions, including
during the COVID-19 pandemic lockdown, and were designed to meet the needs of
a highly specialized and protected user population. Moreover, these studies demon-
strate the value of SARs for encouraging a wide range of regulation skills, including
attention sharing, turn-taking, conversational reciprocity, interruption tolerance, deep
breathing, and de-escalation. They also underscore the importance of architectural
flexibility, real-time adaptability, and socially aware design constraints for enabling
long-term, autonomous operation with vulnerable users in real-world environments.
The experiments presented here include the first SARs developed for adults with ASD
for in-home therapy, one of the few SAR studies to demonstrate continuous learn-
ing progression tied to clinical measures of therapeutic efficacy, and the first SAR to
address behavioral de-escalation in a public space while remaining agnostic to users’
age and diagnostic profile.

The first experiment (Chapter 4) describes the development of a robot to mit-
igate social isolation among children during the COVID-19 pandemic. While social
distancing and quarantine mandates were essential for public health, they intensi-
fied feelings of loneliness—an issue already recognized as a growing societal concern.
Because children at this developmental stage acquire critical, life-long social skills
through physical play, we created a system that allowed one child to remotely control
and communicate through a robot located in a peer’s home, allowing them to engage
in physical play while being geographically separated. With over 2,000 unique users

in three months, this study offered valuable insights into how robots can be deployed



in unstructured, home-based environments to effectively support social connection.

While Chapter 4 examines how robots can support broad social and emotional
needs, Chapter 5 shifts the focus to how robots can support specific developmental
outcomes. This chapter examines the impact of a month-long, in-home, robot-assisted
intervention aimed at improving gaze behavior in children with ASD. Appropriate
gaze behavior is a foundational component of early social development, a prerequisite
for more complex social skills, and a core diagnostic feature of ASD. The intervention,
conducted by Scassellati et al. in 2018 [3], was a landmark study that demonstrated
both the feasibility and the promise of robot-assisted interventions for ASD. Not only
did it validate that such in-home systems could be deployed successfully, but it also
provided evidence of meaningful developmental gains—most notably, improvements
in joint attention. However, at the time, the gold standard for evaluating these out-
comes was clinician-administered assessments conducted at home once at the start
and once more at the end of the intervention. Although this approach yielded promis-
ing results, it left several critical questions unanswered: When did these behavioral
changes emerge during the intervention? Were they gradual or abrupt? Consistent
between participants or highly individualized?

Understanding the timing of behavioral change has important implications for
the future of autonomous therapeutic systems. If we can identify when behavioral
improvements occur, it may be possible to develop systems capable of autonomously
detecting those inflection points—recognizing, in real time, when they effectively
support users. To achieve that goal, we needed to revisit the computational methods
for automatically extracting and interpreting behavioral change. In this chapter, we
address these open questions: Was the SAR-based therapy effective? Did it lead to
measurable behavioral improvements? Can behavioral change be automatically and
accurately detected from interaction data?” When exactly did these changes emerge?
More broadly, what do these patterns reveal about ASD and the design of robot-based
interventions for such a uniquely heterogeneous population?

Still, despite decades of progress in ASD research, the vast majority of studies
and clinical programs have focused almost exclusively on children. Although social,
emotional, and functional challenges are well documented to persist and in some cases
intensify, in adulthood, relatively few studies have addressed how to support adults
with ASD. Chapter 6 explores how SARs can support employment and workplace
readiness for adults with ASD. We developed a robot-led intervention that simulated
common workplace encounters, promoting role play and naturalistic social practice

while integrating into participants’ daily home routines. During the course of a week,



the users engaged in managing unexpected social demands and developed strategies
for cognitive and attentional regulation. Behavioral data and participant feedback
revealed increased resilience to interruptions, positive perceptions of the robot’s use-
fulness for supporting employment goals, and preliminary evidence of skill generaliza-
tion. This study represents the first in-home SAR intervention specifically designed
for adults with ASD.

As individuals with ASD transition into adulthood, the social demands they face
become more complex, ambiguous, less easily scripted, and less forgiving of atypi-
cal behavior. This escalation in social complexity imposes greater demands on the
social intelligence and adaptive capabilities of SARs intended to model or scaffold
appropriate behaviors. Several of our intermediate studies (e.g., [33,34]) explore how
robots can discern when to initiate interaction by assessing social appropriateness—
not merely detecting if a human user is present, but assessing whether it is con-
textually suitable and productive to engage. These considerations are critical for
the success of later interventions, where timing, context, and user readiness shape
engagement quality and outcomes.!

As our work with robot-assisted interventions for adults with ASD progresses,
we turn to conversational skills—particularly small talk—as a critical yet undersup-
ported domain tied to real-world outcomes. From dating to job interviews, making
new friends or simply chatting with the cashier at checkout, small talk plays a key
role in social integration and opportunity access, yet remains especially challenging
for individuals with ASD. To address this, we explore the integration of large language
models (LLMs) into SARs to support natural unscripted conversation. However, de-
ploying an LLM-driven system for long-term, autonomous, unsupervised operation
with vulnerable users in their homes requires robust safety mechanisms to ensure ap-
propriate behavior. Chapter 7 introduces a framework for implementing behavioral
guarantees in SARs relying on foundation models, establishing safeguards that in-
form the development of autonomous interventions in later chapters. Chapter 7 also
demonstrates the practical application of this framework to enable robots to engage
in naturalistic small talk. We position small talk as a compelling frontier that reveals
both the promise and complexity of deploying SARs driven by foundation models in
socially sensitive contexts. Finally, Chapter 8 presents the design, development, and

deployment of a SAR-based small talk training program for adults with ASD. Com-

"'While several formative studies contributed to the development of the systems and insights
presented in this dissertation, not all are included as dedicated chapters. These supporting studies
are cited where they were applied or relevant to preserve a clear narrative arc and focus on the most
consequential deployments.
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pared to our previous deployments, this study introduces novel interventional design
considerations, including a shift beyond rote skill rehearsal toward delivering useful,
personalized feedback—an especially nuanced challenge, as social-skills feedback is
often deeply personal and closely tied to identity.

In Chapter 9, we demonstrate our guardrail mechanism in a new application
area: enabling safe and effective SAR intervention to support students experiencing
heightened emotional states, sensory overload, or difficulties with self-regulation in
traditional classroom settings. While many schools have introduced de-escalation
or sensory rooms to support these needs, their effectiveness is often limited by the
wide range of student profiles and constrained staff availability. To address this, we
developed a SAR to improve students’ self-regulation skills within a school’s existing
de-escalation space. This chapter details the co-design process, iterative development,
and final system architecture. Following a fully autonomous, month-long deployment
in an elementary school, we evaluated the robot’s usability and impact. Findings
indicate that the system integrated seamlessly into the school routine, improved de-
escalation efficiency, facilitated smoother transitions back to learning environments,
and produced sustained positive effects months beyond the deployment period.

In Chapter 10, we conclude the dissertation with a summary of the work pre-
sented. We discuss key contributions and broader implications, along with directions

for future research. In all, the core contributions of this dissertation are as follows.

1. A cross-domain analysis of SAR studies demonstrating extended inter-
actions with SARs, operationalizing definitions of “long-term” deployment and

user outcome measures.

2. A comprehensive review of more than 300 studies on robot-assisted in-
terventions for individuals with ASD, identifying foundational trends, design as-
sumptions, and research gaps in the field. We conclude this review by proposing
a consolidated hypothesis and a theoretical foundation for why robots
may be uniquely effective tools for therapy, based on empirical findings and

psychological frameworks.

3. Design, development, and deployment of multiple SAR systems target-
ing social regulation skills (e.g., attention sharing, turn-taking, conversational
reciprocity, interruption tolerance, deep breathing, and emotional de-escalation)
across diverse populations (e.g., adults with ASD, individuals with multiple

co-occurring neurodevelopmental conditions, elementary-aged children in spe-
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cialized education programs) and settings (e.g., in-home deployments during

pandemic lockdown periods and public school setting).

. The first SAR systems designed specifically for adults with ASD,
addressing an underrepresented population and targeting skill areas that are

largely overlooked in both SAR development and clinical intervention research.

. Introduction of a safety and behavioral guardrail framework for SARs
using foundation models, enabling ethical, unsupervised deployment in so-

cially sensitive contexts.

. Empirical evidence of SAR impact beyond mere novelty and presence
effects, including sustained engagement, skill generalization, and successful

integration into users’ everyday routines and environments.
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CHAPTER 2

Toward Sustained Social Interaction: A Review of
Trends, Gaps, and Challenges in Long-Term HRI

Over the past two decades, the field of robotics has experienced substantial growth,
marked by a notable increase in long-term human-robot interaction (HRI) studies.
To enable a broad inclusion of the relevant literature, we define “long-term” as studies
in which a robot interacts with the same user over at least three sessions spanning
a minimum of three consecutive days. As a result of adopting this inclusive defini-
tion, this chapter synthesizes 120 long-term HRI studies conducted over the past two
decades. These studies span seven key domains, including education, entertainment,
and physical and mental health, offering a comprehensive view of the field’s evolution
and scope. From this corpus, we extract key patterns and divergences in study design,
participant demographics, interaction dynamics, and evaluation methods, providing
a structured overview of the current landscape of long-term HRI.!

This review reveals emerging trends, underlying design assumptions, proposed
robot interaction strategies, and critical research gaps. Together, these insights in-
form the goals of this dissertation in its three core dimensions: the design of robots
for social interaction, their technical development, and the contextual factors that
enable their successful deployment. The growing emphasis on long-term real-world
deployments observed in this review underscores the importance of designing robots
capable of sustaining meaningful engagement over extended periods of interaction.
Observed pedagogical patterns, particularly in educational and therapeutic settings,
offer concrete models of how robots can scaffold learning, support social regulation,
and adapt to user needs over time. At the same time, persistent gaps—such as the

limited inclusion of adolescents and the relative scarcity of studies in school and

'This chapter is adapted from our published work: Matheus, K., Ramnauth, R., Scassellati,
B., & Salomons, N. (2025). Long-Term Interactions with Social Robots: Trends, Insights, and
Recommendations. ACM Transactions on Human-Robot Interaction, 14(3), 1-42. [22]. We include
additional context, commentary, and analysis to support its integration into this dissertation.
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workplace contexts—highlight the need for more inclusive and context-aware inter-
ventions. This dissertation responds to these gaps by advancing robots tailored for
underrepresented populations and settings, while proposing new methods to support
sustained, socially meaningful interaction. In doing so, it builds on and extends the

trajectory of long-term HRI research.

2.1 Introduction

During the past two decades, the field of social robotics has undergone remarkable
growth, accompanied by a surge in studies that examine long-term human-robot in-
teractions that unfold over multiple days, weeks, or even months. A social robot
possesses features and capabilities that enable it to interact with humans in ways
that resemble social interactions between people [19]. Such robots can exhibit behav-
iors such as recognizing and expressing emotions [37], understanding and generating
natural language [38], adapting to different social contexts [39], and even demonstrat-
ing a degree of empathy [40]. For many, the goal of social robotic study is to support
a future where robots are not only present in individual laboratory sessions, but are
integrated longitudinally into daily lives.

By our accounts, the number of HRI research papers examining the longitudinal
use of social robots has tripled from before 2013 to 2023 (Section 2.4). Bajones et
al. [41] have highlighted this transformation by noting that whereas the “burning
question in HRI studies” was once “how many participants do I need?”; it is now
“how long should my study run for?” Such a shift reflects the field’s progression
beyond initial experimentation in social robotics and toward a deeper understanding
of how robots can be effectively deployed in real-world applications. In a future
where robots are integrated into our homes, schools, offices, and medical facilities,
it becomes increasingly essential to research the dynamics of long-term interactions
spanning days, weeks, months, and even years.

From a research perspective, the study of repeated human-robot interactions offers
several distinct advantages over single-session studies. First, many forms of human-
robot interaction require longitudinal engagement to achieve meaningful impact—
particularly in applications such as tutoring, training, or therapy, where robots are
intended to support skill development or behavioral change. Second, as in human-
human relationships, the dynamics of human-robot relationships evolve over time.
The key benefits of long-term study are understanding how to foster healthy and

resilient HRI relationships, how to personalize interactions with individual users, and
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(d)

Figure 2.1: Illustrative Cases of Long-Term Robot Deployment Across Domains.
Four long-term robotic interaction studies from our corpus, illustrating the diversity of
application domains and interaction characteristics analyzed in this review: (a) a study on
the persistence of first impressions with a Furhat robot [1], (b) a Robovie robot engaging
children in a classroom setting [2], (c) a robot delivering social skills training to children
with Autism Spectrum Disorder [3], and (d) a robot designed to motivate physical exercise
among older adults [4].

which relational models are most effective in different contexts. Finally, long-term
deployments are essential for investigating practical factors such as usage patterns,
drop-off rates, and strategies for sustaining engagement [42-44]. These insights are
crucial to understanding the effective integration of robots into daily life and soci-
ety. Only by studying HRI over longer periods can researchers observe how users
adopt robotic systems and what factors contribute to successful and lasting adoption.
Section 2.2.2 provides a deeper discussion of these benefits.

Although the benefits of long-term HRI research are substantial, the pursuit of
such studies often demands significantly more time, resources, and effort from re-
searchers [45]. Unlike single-session experiments, long-term studies typically involve
repeated interactions across multiple sessions. Although they can be conducted in

controlled laboratory environments, they are less commonly situated there due to
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practical constraints such as limited space, scheduling difficulties, and challenges in
maintaining participant availability. As a result, long-term studies are more likely to
be carried out in real world settings such as homes, schools, or clinics, where robots
are expected to operate “in the wild.” These scenarios demand robots that are robust
and autonomous, capable of reliably functioning in diverse contexts and at varying
times of the day. Researchers must account not only for how the robot behaves dur-
ing scripted interactions but also for how it operates during unsupervised moments
throughout the full deployment timeline. Investigations of topics such as personaliza-
tion and adaptive behavior to maintain user engagement require additional layers of
design and technical sophistication. In addition, long-term deployments raise concerns
about data privacy, ethical oversight, and system reliability, while participant recruit-
ment and retention over extended periods remain persistent logistical challenges. A
more detailed discussion of the challenges and trade-offs involved in long-term HRI
research is presented in Section 2.2.3.

Because the nature of long-term HRI studies presents substantial challenges, it is
vital that researchers look to previous efforts for guidance, inspiration, and cautionary
lessons. Therefore, we provide a comprehensive review of long-term HRI studies
conducted over the past 20 years as a valuable resource for researchers. Our work
fills a notable gap in the literature, as the last in-depth review on this topic [46] was
conducted more than a decade ago in 2012. Building upon this prior work, our study
presents a comprehensive analysis of 120 studies spanning seven major domains, such
as education, entertainment, physical health, and mental health. Our analysis covers
the period from 2003 to the time of analysis (April 2023), providing a comprehensive
overview of the progress made in the field. To ensure inclusiveness and capture
relevant trends, we have defined long-term in our corpus as studies deploying a robot
with the same users for three or more sessions over three consecutive days (e.g., one
session per day for three days, once a week for three weeks, etc.). By adopting this
criterion, we aim to identify patterns and insights that can contribute to a deeper
understanding of long-term HRI. Nonetheless, we also discuss alternative approaches
to the definition of “long-term” in Section 2.2.1.

In our analysis, we explore patterns over time and across domains for a number of
study design aspects, including longitudinal characteristics of the studies, the types
and number of participants involved, study locations, defining elements of human-
robot interaction, and the types of results and engagement measures employed. Figure
2.1 shows four different long-term robotic interaction studies from our corpus, which

vary widely between the characteristics we analyze. For instance, studies vary from
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dyadic (a and d) interactions to triadic (c¢) and group (b) interactions. The ages of
the participants in our studies ranged from children (b, ¢) to the elderly (d). Some
studies were carried out in the wild, such as in the home (c) or schools (b); others (a
and d) were conducted in laboratory environments. In addition, they span a variety
of domains, including education (a and b), social skills training (c), and physical
exercise (d).

By highlighting key insights and design patterns from existing studies, our aim
is to equip the HRI community with the knowledge needed to collectively address
persistent challenges, refine methodological approaches, and drive innovation in the
field of long-term human-robot interaction. We conclude this review by outlining
major gaps in the literature, identifying opportunities for future research, and offering

practical guidelines to support the design and execution of long-term HRI studies.

2.2 Background

In the sections that follow, we establish a working definition of long-term within
HRI, critically assess the benefits and challenges of sustained interaction research,

and summarize previous review efforts in the field.

2.2.1 What is Long-Term HRI?

As this review covers the topic of long-term HRI, the first question one may ask is:
what does “long-term” mean in the context of robotics? Could any repeated interac-
tion with a robot be considered long-term, or is there an unspoken rule that a study
must meet in order to be considered part of this category? Multiple perspectives are
available in the HRI literature with no single agreed-upon approach. Many studies
are organized around distinct sessions between users and robots, so one logical ap-
proach is to consider a minimum number of sessions. Kory et al. take this approach
for inclusion in their review of long-term, socially interactive agents [47], using five
sessions as a cutoff while also acknowledging the arbitrary nature of this choice. By
this measure, Ramachandran et al’s [48] five sessions with an adaptive robotic tutor
would be considered long-term, but Donnermann et al’s [49] three sessions or Jones
and Castellano’s [50] four sessions, also with adaptive robotic tutors, would not. Ar-
guing that there is a meaningful distinction between, for example, four versus five
sessions as a threshold for “long-term” may be unproductive. Moreover, if all five ses-

sions occur within a single day rather than being distributed over time, the validity

17



of the “long-term” designation becomes more questionable. Similarly, how should we
compare a series of five 3-minute sessions across a week to five 30-minute sessions?
Although the number of sessions may be an easy yardstick, it does not fully account
for the depth, duration, or temporal spacing of interactions and therefore provides an
incomplete picture of the full interaction story.

An alternative approach to defining “long-term” might involve calculating the
total duration of the user-robot interaction over the course of a study. Few studies
explicitly report this metric; for example, Afyouni et al. [51] observed an average
of 2 hours and 22 minutes of free-use interaction over one week, while Kidd and
Breazeal [52] reported an average usage spanning 50.6 days. However, most studies
do not measure or report total interaction time, potentially due to methodological
complexity or a lack of historical precedent. Even when reported, this metric does
not account for the distribution of interactions over time—for example, the frequency
and length of gaps between sessions. More fundamentally, the interpretation of what
constitutes “long-term” may vary depending on the robot’s domain and intended
function. A given duration of interaction may have very different implications for a
tutoring robot compared to a game-playing or therapeutic robot, due to differences
in cognitive load, task structure, and the degree of repetition involved. Thus, while
the total interaction time offers a useful starting point, it also remains an incomplete
measure of longitudinal engagement in HRI.

Another approach to benchmarking the definition of “long-term” in HRI is to
evaluate whether the interaction has surpassed the novelty effect [46]. The novelty
effect refers to the initial period of heightened interest or excitement when users first
encounter a new technology. It is an effect that is expected to fade as familiarity sets
in. In the context of social robotics, this transition is marked by a shift from surface-
level curiosity to more stable, predicable patterns of user behavior. Designing studies
that capture user behavior beyond this initial novelty phase allows researchers to
more confidently attribute observed outcomes to sustained human-robot interaction,
rather than to short-term responses driven by the appeal of a new experience. As
such, passing the novelty threshold may serve as a more functionally meaningful
indicator of “long-term effects” than session count or total interaction time alone.

To this point, Bajones et al. [41] proposed that the novelty phase is unlikely to
subside before three weeks of repeated interaction, and thus established a study dura-
tion of 21 days to ensure their findings reflected post-novelty, long-term engagement.
Previous work has attempted to establish when the novelty effect wears off [42, 46].

However, there is no fixed or universally agreed-upon timeframe given the numerous
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variables that can influence novelty effects. For instance, the complexity of the in-
teraction affordances on the robot may impact how inherently engaging it is and the
diversity of features to explore. Alternatively, the setting of the robot (e.g., public
versus private) may impact the level of desire a user has to interact with the robot.
Such variability ultimately places the responsibility on researchers to substantiate
attenuation of the novelty effect in their specific use-case scenario by employing ap-
propriate metrics and analysis, which relatively few authors in our corpus have done.
Among those who have, Weiss et al. [42] noted the presence of novelty effects by
observing a decline in attachment levels with a Vector robot after just two weeks out
of a 30-week study. In contrast, Bodala et al. [53] reported no discernible evidence of
novelty effects even after five weekly sessions with a mindfulness training robot. This
finding presents a methodological puzzle: Did the study fail to elicit novelty effects
from the outset, or was a five-week duration still insufficient to move beyond them?

In the absence of a universally accepted definition, this review adopts a delib-
erately broad approach to defining long-term within the context of HRI. For the
purposes of our analysis, we consider studies to be long-term if they involve interac-
tions with the same user in more than three sessions on at least three separate days.
This threshold allows for consistency across our corpus while acknowledging the field’s
variability. In this framing, all long-term studies are necessarily multisession, though
not all multisession studies qualify as long-term—such as those limited to only two
sessions. Although we do not aim to establish a rigid definition of “long-term” HRI,
one of our goals is to clarify how the field has operationalized this concept to date.
In Section 2.4.1, we examine the diverse temporal characteristics represented in our
corpus, including session count, number of days, and total interaction time, and offer

guidance on how future research might more thoughtfully incorporate these elements.

2.2.2 Benefits of Long-Term HRI Research

Long-term HRI studies inherently require substantial time, resources, and effort. In
this section, we outline three key reasons why researchers may find it valuable to

invest in conducting long-term studies in human-robot interaction.

Interaction Outcomes

Several types of robot interaction and opportunities are only possible with long-term
deployments. Certain robotic systems designed to teach new skills, such as tutoring,

physical training, or cognitive training, require multiple sessions over an extended
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period to effectively support skill development (e.g., [4,49,54-60]). Assessing the ef-
fectiveness of these programs also requires longitudinal measurements to demonstrate
the user’s skill acquisition over time. Therapeutic robots, such as those that support
people with mental health challenges [61] or Autism Spectrum Disorder (ASD) [62],
benefit from a long-term study in similar ways. Successful therapeutic engagements
are often repetitive in nature [63], and long-term interaction allows researchers to
observe the effects of sustained engagement on the well-being of individuals receiving

therapy.

User Perceptions and Relationships

Another key advantage of long-term HRI studies is the opportunity to examine how
users’ perceptions of robots, and their relationships with them, evolve over time.
Kory-Westlund et al. introduce the concept of moving “beyond interaction to rela-
tionship” in long-term HRI [47], noting that just as relationships with humans can
enhance learning, health, and social outcomes, sustained relationships with robots
may offer similar benefits. For example, Paetzel et al. [1] found that while robot per-
ceived competence remained consistent throughout repeated sessions, perceptions of
threat and discomfort varied, suggesting a more nuanced relational dynamic. Jeong et
al. [64] observed that a home-based social robot was able to build rapport and a work-
ing alliance while supporting the mental well-being of college students. The ability to
foster positive, long-term relationships is particularly important for companionship-
oriented robots, such as those designed for general home use or to mitigate loneliness
in elder care settings [6,8,65-68].

Robot Adoption and Long-Term Engagement

Long-term studies also offer valuable insight into the adoption of robots in various
settings. Factors such as usage patterns, drop-off rates, and strategies to sustain
participation [42-44] are crucial to understanding the effective integration of robots
into daily life and society. One specific area of interest is the examination of the
novelty effect and its impact on user interactions with robots [69,70]. Consequently,
a key challenge for long-term HRI is designing systems that continue to engage users
even after the novelty effect has subsided [6,71]. Only by studying long-term robot
deployments can researchers explore strategies and design principles that promote
both adoption and sustained user engagement, ensuring that robots maintain their

effectiveness.
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2.2.3 Challenges of Long-Term HRI Research

Despite the many benefits of long-term HRI, conducting such studies presents sev-
eral nontrivial challenges. In this section, we provide a brief overview of the key
obstacles encountered by the studies in our corpus. These challenges underscore the
importance of understanding the current state of the field and highlight areas where

methodological refinement and community-wide support are especially needed.

Autonomous, In-the-Wild Deployments

Longer-term deployments often increase the demand for robot autonomy, as it be-
comes impractical to rely on a human operator throughout the study period. Al-
though not all long-term studies face this challenge, many require the development
of fully autonomous systems equipped with more complex capabilities such as robust
behavioral planning, expanded sensorimotor functions, wireless connectivity, remote
data logging, and streamlined remote troubleshooting.

In addition, many long-term studies take place in “in the wild” environments such
as homes, schools, or hospitals. These real-world settings offer valuable opportunities
to study robots in authentic contexts and often facilitate access to relevant partici-
pant populations at scale. However, conducting research in these environments also
presents considerable challenges, as researchers have little control over physical or
social conditions. Each home, classroom, or clinic presents a unique set of environ-
mental variables that require robots to adapt to diverse and unpredictable conditions.
For example, perception systems must handle varying levels of background noise and
lighting; safety protocols must account for a wider range of scenarios; and behavior

planning must remain robust across fluctuating user behaviors and contextual cues.

Recruitment and Adherence

Recruiting participants for long-term HRI studies is often significantly more complex
than for single-session research. Unlike short-term studies, participants must commit
to multiple sessions over an extended period, increasing the likelihood that changes
in schedules, routines, or personal circumstances will interfere with participation.
Additionally, depending on the study context, participants may need to welcome the
robot into more private or personal spaces, such as their homes, which can further
narrow the pool of willing volunteers.

The maintenance of participation also becomes more challenging with time. In
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short-term studies, users are generally able to remain engaged and adhere to pro-
tocols, particularly under the supervision of researchers. In contrast, long-term
deployments—especially those conducted in the wild—require participants to remain
engaged without continuous oversight. After the initial novelty wears off, users must
be intrinsically motivated to continue interacting with the system. As such, long-term
systems must offer sustained value, whether through engaging behaviors, perceived
usefulness, or meaningful integration into daily life. These increased demands place

a greater burden on both the system design and the participant experience.

Dynamic Content and Personalization

Developing sufficient content and robot behaviors for long-term deployments can be
a substantial challenge—particularly when interactions span weeks, months, or even
years. Unlike short-term studies, where limited and repetitive content may suffice,
long-term HRI requires a more extensive and varied interaction repertoire. Users
are unlikely to remain engaged with a robot that delivers the same or overly similar
utterances and actions across sessions, making it considerably more challenging to
sustain interest over time.

This challenge is compounded when considering personalization, which has been
shown to improve user engagement and interaction outcomes in numerous studies
[72,73]. Personalizing content for individual users introduces additional complexity,
as it demands not only a larger pool of content but also consideration of diverse user
attributes such as age, preferences, skill levels, and learning styles.? Personalization
also requires robust user modeling systems and intelligent action selection mechanisms
capable of adapting to the user’s evolving state over time.

In general, the design and development of interaction content for long-term studies
is considerably more labor intensive and technically demanding than for single-session

studies, which poses a significant barrier to scalability and widespread deployment.

Cost

Another critical consideration when designing a long-term study is the cost of the
hardware systems involved. Robots are often expensive to acquire, maintain, and
operate—particularly when multiple units are required to support parallel deploy-

ments with several users. In studies where only a single robot is available, the need to

2Tt is worth noting that recent advances in large language models have begun to ease some of
these challenges, particularly with regard to dynamic content generation. However, the vast majority
of studies in our corpus were conducted before such technologies became widely available.
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sequentially run participants can dramatically extend the study duration, potentially
taking months or even years to complete. Beyond the robots themselves, long-term
studies often require duplicate sets of supporting equipment, including computers,
cameras, networking hardware, and environmental sensors. These additional costs,
both financial and logistical, can significantly constrain the scale, length, and fea-
sibility of long-term research, particularly for studies that aim to include diverse
populations or real-world contexts. As a result, the high resource demands of long-
term HRI can limit not only who can conduct such studies, but also what kinds of

questions can realistically be explored.

2.2.4 Prior Long-Term HRI Reviews

There have been two prior reviews specifically addressing the topic of long-term HRI
[46,47]. The first, published by Leite et al. in 2012, focused on social robots used in
extended interactions and included a corpus of 24 studies [46]. The authors considered
papers in which robots engaged users socially for prolonged periods, although they
did not explicitly define what constituted an “extended” timeframe. The primary
objective of the review was to synthesize key findings from these studies and to
identify open questions for future research on long-term HRI. Notably, the review
paid particular attention to how user interaction evolved beyond the novelty effect,
emphasizing studies that demonstrated continued engagement over time.

In their review, Leite et al. [46] categorize the 24 studies into four application
domains: healthcare and therapy, education, work environments and public spaces,
and home robotics. In the domain of healthcare and therapy, the authors report
generally positive outcomes, although they note that most studies were limited by
small sample sizes. Their discussion of educational robots centers primarily on child-
robot interactions, highlighting the critical role of the robot’s form factor and behavior
in shaping user engagement. For studies situated in work environments and public
spaces, the authors caution against drawing broad conclusions due to the diversity
of contexts and the limited number of studies available. Lastly, in the context of
home robots, the review emphasizes the importance of overcoming the novelty effect
to ensure sustained use. The novelty effect is described as having worn off once users
become familiar with the robot and begin seeking new behaviors or experiences from
the system.

There are three key differences between Leite et al’s review and the present study.

First, our review includes a broader and more recent body of work, incorporating stud-
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ies published between 2013 and mid-2023. Over the past decade, the field of long-term
HRI has expanded considerably, and many influential contributions are captured in
our updated corpus. Second, our inclusion criteria differ substantially. Although Leite
et al. include studies involving robots that interact with different users each day, such
as receptionists or mall guides, we focus exclusively on studies in which the same user
interacts with the robot across multiple sessions over time. This distinction allows us
to differentiate between long-term interaction deployments, where a user experiences
the robot longitudinally, and long-term research deployments, where the robot is de-
ployed for an extended period but individual users may only interact with it once.
Our focus is on the former, and this is what we refer to as “long-term” throughout this
review. Finally, we disaggregate study characteristics related to deployment setting
and application domain—for example, distinguishing between a healthcare robot used
in a private home versus one deployed in a clinical facility. In contrast, the smaller
number of studies available at the time of Leite et al’s review meant that deployment
context and domain were more closely correlated and not analyzed separately.

The second prior review on long-term HRI is a book chapter on long-term so-
cially interactive agents (SIAs), published by Kory-Westlund et al. in 2022 [47].
Although their scope is broader—in that it encompasses both physical robots and dig-
ital agents—the authors dedicate a section specifically to long-term embodied robots.
Their inclusion criteria define long-term interaction as involving at least five sessions,
irrespective of session length or the time interval between the first and fifth sessions.
Using this definition, they identified 67 relevant studies. Similarly to the 2012 review
by Leite et al., their discussion is organized around application areas, specifically:

MW

“social robots and children,” “social robots and health and wellness,” and “living
with consumer robots.” The chapter summarizes key insights from studies in each of
these domains and emphasizes the importance of relationship building over time in
long-term SIA interactions.

Our review is complementary to this work, but differs in several important ways.
First, we adopt more specific inclusion criteria, focusing on studies that involve at least
three sessions with the same user over a minimum of three separate days. Second, we
provide a broader analysis of long-term HRI studies, examining trends over the past
two decades and categorizing them into seven key domains. Finally, we extend the
analysis to include a range of study design characteristics, such as deployment setting,

robot autonomy, personalization, and engagement metrics, as detailed in Section 2.3.
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2.3 Review Method

In this section, we describe the method for compiling our corpus. In order to sys-

tematically review social robots deployed in long-term situations over the past two

decades, we developed the following criteria for paper inclusion.

1.

The study must involve social interaction between at least one robot and at least
one human. We did not include studies in which the robot only had functional

use with little to no social elements (e.g., [74,75]).

The participants and the robot must have interacted for at least three sessions
(either as required by the study or from the user’s free use) over a minimum of

three separate days.

The robot interacted with the same user for at least three sessions, and data was
tracked for the user throughout the sessions. This excludes long-term studies
in public spaces where the robot was interacting with a different user every
time (e.g. [76,77]), or where data was not clearly tracked for the same user
(e.g. [78,79]).

The robot must be or appear to be an autonomous agent to the user. Wizard-
of-Oz studies are included in the analysis if the robot was presented to the
participants as autonomous. We did not include telepresence studies (e.g. [80])
or studies in which the participants mainly controlled or programmed the robot
(e.g. [81]). Furthermore, we did not include studies that focused solely on

design, in which the user did not interact with the robot in a deployed manner
(e.g. [82]).

The robot must be physically present (embodied) during the interaction. We
included studies with multiple experimental conditions if at least one had an em-
bodied robot. We did not include studies where the robot was only represented

on a screen or as an avatar (e.g. [83]).

We started by including all papers from Leite et al. [46] that met our updated

inclusion criteria. For studies published after 2012, we conducted a systematic key-

word search using Google Scholar as well as proceedings from relevant journals and

conferences. Our search terms included: long-term, long term, in-home, in home,

home deployment, repeat use, repeated use, multi-session, multisession, in the wild,

in-the-wild, weeks, months, and longitudinal, each used in combination with robot
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or robotics. The venues reviewed included major outlets in the HRI community:
Human-Robot Interaction (HRI), the IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), the International Journal of Social
Robotics (I1JSR), the Journal of Human-Robot Interaction (JHRI), ACM Transactions
on Human-Robot Interaction (THRI), and Science Robotics. The papers identified
through these channels were initially screened based on their abstracts and then
manually reviewed by three members of our research team to assess their eligibility
according to our inclusion criteria. The earliest paper in our corpus was published in
2003 [84], and our search cutoff date was April 2023.

In total, we found 118 papers that met our criteria, representing 120 studies. The
number of studies and papers differ as some papers (e.g. [85]) presented several sepa-
rate studies that fit our criteria, and others had multiple papers derived from the same
data which were not included in our final corpus. Our research team reviewed the
papers and annotated key information from each, as outlined below. When uncertain
or disagreed, the three annotators discussed a paper together to reach a consensus on
which category or number best represented the situation. The following information

was extracted from each paper:

TEMPORAL QUALITIES:
e Year: The year the paper was published.

e Study Period: The average number of days the study was performed for
each user. This was most often reported directly by the authors of the article
themselves. When the period was not listed in days, we assumed that one week
is seven days and one month is 30 days, to calculate an estimated number of days
for the study. For example, “four sessions within two weeks” [86] has a study
period of 14 days, while one session every week for a total of ten sessions [87]
totaled a 70 day study period estimate (the sessions need not be on the same
day per week). In rare cases where the study period was unclear, such as “for

a semester,” we listed the study period as unknown.

o Number of User Sessions: The average number of sessions between a robot
and a participant, as relevant. Some studies were not session-based and instead
were labeled as “free use” if use was entirely up to the user or “daily use” if

participants were instructed to generally use the robot on a daily basis.

« Session Length: The average number of minutes per session (as relevant).
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o Total Interaction Time: The average total time, in minutes, that each par-
ticipant spent with the robot during the study. When this information was not
given explicitly in a paper, we manually calculated an estimated time based on

other characteristics listed in the paper.
APPLICATION DOMAINS, PARTICIPANTS, & STUDY LOCATION:

e Domain: The main application domain of the study. We classified studies into
the following domains: physical health, mental and cognitive health, education,
entertainment, service and workplace, general purpose (i.e., home robots that
provide several general uses), and Autism Spectrum Disorder (ASD). Although
ASD-related studies can overlap with physical or mental health domains, we
categorized them separately due to the high volume of research specifically
focused on ASD within the HRI literature.

o Participants: The number of data-generating participants in the study. We
only consider the number of participants that interacted with a physical robot.
For example, in [56], only 20 of 61 participants interacted with an embodied
robot; the other participants interacted with systems that did not include a
robot. Therefore, we considered the number of participants to be 20. We also
do not consider participants who were excluded from the analysis for varying

reasons, such as technical difficulties or leaving the study prematurely.

o« Age Group: The primary age group of the participants. We categorized
the participant samples into different age groups: infants (0-3 years), children
(3-12), teens (13-17), adults (18-65), elderly (65+), and mixed. When more
than 80% of the participants fell into one particular category, we classified it as

the majority category instead of mixed.

e Location: The primary location where the study was conducted. We classi-
fied each study into the following locations: home, school, care home, hospital,
rehabilitation facility, daycare, laboratory, workplace, museum, and other. We
categorized a study under the workplace domain when the deployment took
place in an office, business, or similar professional environment—for example,
a corporate office for employees or a car rental agency. Although schools and
hospitals are also workplaces for teachers and healthcare professionals, we classi-
fied these settings separately due to their unique social structures, institutional

goals, and user populations. The nature of human-robot interaction in educa-
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tional and clinical environments often differs substantially from that in general

workplace settings, which warrants different categorization.

e Country: The primary country where the study occurred or participants were

recruited.
STUDY AND ROBOT QUALITIES:

e Robot Platform: The primary robot(s) or robotic platform(s) used in the
study.

e Autonomy: The level of autonomy exhibited by the robot. We classified each
system as autonomous (operating independently without human intervention),
semi-autonomous (a combination of autonomous behavior and human control),
or non-autonomous (fully operated by a human, such as through teleoperation

or scripted control).

o Interaction Dynamic: The number and configuration of people involved in
the interaction with the robot. We categorized interactions into six primary
types: dyadic (one robot and one person), triadic (one robot and two people),
group (one robot interacting with a group or family), observer (one person ob-
serving others interact with the robot; e.g., [88,89]), and mized (a combination

of the above types within the same study; e.g., [54,84]).

« Personalization & Adaptation (Y /N): Whether the robot exhibited any
form of personalization or adaptation. We labeled Yes if the robot adapted its
behavior based on the user’s actions or personalized its responses over time;

otherwise, we labeled it as No.
RESULTS & MEASURES:

e Qualitative Results (Y/N): Whether the study had qualitative results. We
labeled Yes if the paper presents a discussion or analysis of any qualitative
findings, and No if the paper does not. The definition of qualitative for this
review includes nonnumerical subjective measures, including but not limited
to open survey responses, interviews, ethnographic methods, and behavioral
observations. If some numerical data were collected but the predominant anal-
ysis, results, and discussion presented were qualitative, the paper was labeled

qualitative only.
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« Quantitative Results (Y/N): Whether the study had results from a quan-
titative analysis presented. We labeled Yes if the paper presents a statistical
analysis of quantitative findings, or No if the paper does not report any quanti-
tative findings. At times, studies presented quantitative analyses on qualitative
results. These were judged as quantitative in addition to qualitative if the re-
sults presented multiple numerical analyses towards the authors’ claims. Stud-
ies presenting descriptive metrics (e.g., interaction counts or survey averages)
alongside predominantly qualitative results were not considered quantitative. A
small number of studies that collected longitudinal data for training machine

learning models were also classified as quantitative.

« Conditions (Y/N): Whether the study had conditions for the pursuit of sta-
tistically significant results. We labeled Yes if the paper presents a statistical
analysis of separable and controlled conditions, or No if the paper does not have

conditions or does not perform a statistical analysis of study conditions.

« Long-Term Engagement (Y /N): Whether the study reported long-term en-
gagement measures. We labeled Yes if the paper reports a measure of a user’s

engagement over time during the study, or No if not.

« Engagement Measure: The method(s) used to assess user engagement. For
papers that reported engagement, we documented the specific measures used
(e.g., self-reported surveys, study drop-out rates, frequency or duration of con-

tinued interaction with the robot).

2.4 Findings

This section presents an analysis of the 120 studies identified based on the inclusion
criteria described previously. A complete list of these studies, along with a subset of
key characteristics, is provided in Appendix A. As shown in Figure 2.2, the number
of long-term HRI studies has increased steadily over the past two decades, accom-
panied by a broadening of the interaction types explored. In the following analysis,
we examine the defining characteristics of long-term studies published since 2012, as
introduced in Section 2.3, including study duration, participant demographics, inter-
action settings, modalities, and application domains. We also highlight approaches to
measuring long-term engagement and strategies to improve outcomes, such as person-

alization and adaptation. Where relevant, we report trends across two time periods,
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Figure 2.2: Annual Distribution of Reviewed Studies. The figure above shows the
number of studies meeting our review criteria by year. The bar for 2023 reflects partial data
collected between January and April, in contrast to the complete annual data available for
previous years.

2003-2012 and 2013-2023, to illustrate how the field has evolved over time.

2.4.1 Temporal Qualities

In this section, we first analyze the various ways in which researchers have reported the
temporal characteristics of long-term HRI studies.> These include the overall study
period, the number of interactive sessions with a robot, the lengths of these sessions,
and the total interaction time per user over the course of the study. As seen in Figure
2.3, these characteristics vary widely. For instance, some studies report on three
sessions distributed over several weeks (e.g., [49,91,93]), while others (e.g., [5,43])

investigate tens of sessions over multiple months.

Study Period

The study period is defined as the number of days from the first study session a

participant has with the robot system to the final session with the system. Given the

3Tt is important to note that not all studies in our corpus make claims of being “long-term”
despite meeting our qualifications for inclusion. Some authors utilize terms such as “multisession”
(e.g., [90,91]) or “longitudinal” (e.g., [563,92]) to describe the nature of their study rather than “long-
term.” Our corpus includes all studies that met our criteria, separate from any authors’ claims.
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intentional breadth of our inclusion criteria for long-term interaction, we find a large
variety of study periods (M = 48.4 days, SD = 70.2 days). These ranged from the
minimum of three days [57] to 570 days [94], as illustrated in Figure 2.3a. For seven
papers, which total eight studies, the study period was not reported [49,85,95-99].

Investigating the primary motivations of shorter versus longer studies, we observed
several patterns. For studies shorter than two weeks (N = 17), we find that the
objective of the study was often exploratory or in evaluating a new technique. For
instance, nine of these studies aimed to investigate user perceptions and usability of
a robot in a new environment (e.g., [1,64,100-102]) or the relationship built between
participants and the robot (e.g., [51,103]). Four of the studies that were shorter
than two weeks sought to validate new technical methods (e.g., [57,90,104,105]), and
four studies show participant improvements in a new skill or task (e.g. [59,100]). In
contrast, many of the studies that occurred over the span of three months or longer
(N =14, [5,6,42-44,56,58,85,94,106-110]) explored the adoption, engagement, and
usage patterns of robots in long-term settings. This divide makes sense, as studies
aimed at longer-term engagement and usage require that the study period last beyond
any novelty effects.

By comparing study periods by decade, we find that more studies with shorter
periods have occurred in the recent decade (2013-2023). For example, of the 23 stud-
ies in the first decade (2003-2012) that report a study period, only five (21.7%) have
a study period of less than a month. In contrast, 48 (53.9%) of the 89 studies in
2013-2023 that report a study period report a period of less than a month. The
increase in long-term studies over shorter periods of time can be considered in one
of two manners: either the lengths of long-term studies have decreased over time,
or there has been a natural progression from single-session studies into multisession
studies. We find that there is an emergence of studies that do not intend to examine
the long-term effects of the robot interaction, but rather to investigate certain ele-
ments of usability and instruction that require a handful of sessions instead of just
one (e.g., [100,101]).

User Sessions

In addition to the number of days of a study, we report on the duration and number of
user sessions with a robot. These measures capture the amount of direct interaction
that a participant has with a robot. A session is characterized by a specific duration

when a participant is expected to interact with the robot system. 86 studies (71.7%) in
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Figure 2.3: Comparison of Study Length and Frequency between 2003—2012
and 2013-2023. The distribution of the studies based on study length is shown in (a).
For studies that were sessions-based rather than free use of the robot system, distributions
of the studies based on the number of sessions (b) and session length in minutes (c) are
shown. Lastly, the distribution of studies based on total study length in hours as reported
or estimated by the reported number of sessions and session length is shown in (d). We
compare the distributions across two decades to examine emerging trends in light of the
rapid growth in long-term HRI research.

our corpus reported a particular number of sessions per participant and are therefore
considered to be session-based. For sessions-based studies, we find that the number
of sessions varies widely from three sessions [1,49,54,93,98,111-113] to as many as
1559 sessions in the study by Ostrowski et al. [6], as shown in Figure 2.3b. To better
represent the distribution of interaction frequency, we excluded the Ostrowski et al.
study as a clear outlier. With this adjustment, the average number of sessions across
session-based studies in our corpus is 15.5 (SD = 23.9). For 21 studies, the number
of sessions per participant was not reported.

Among the session-based studies, 77 (representing 64.2% of the entire corpus)
reported a specific session length. These durations varied considerably, ranging from
as short as one minute [6,103] to as long as three hours [85], with an average session
length of 26.9 minutes (SD = 28.2 minutes). The remaining 32 studies did not

provide a clear duration for each session. Consistent with our earlier findings on
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study periods (Section 2.4.1), we observe that the decade 2013-2023 saw a higher
number of studies featuring shorter sessions and fewer total sessions compared to the
previous decade (2003-2012), as illustrated in Figure 2.3c.

In our corpus, 10 studies were neither session-specified nor session-based, as they
did not report the number or duration of the participants’ sessions. An additional 11
studies reported that user sessions were self-directed daily use (N =9, [110,114-121])
or free use* across the entire study period (N = 2, [41,102]).

Total Interaction Time

Three studies directly reported the total interaction time per participant [51, 84,
122]. Many of the remaining studies reported session lengths alongside the number
of sessions. In order to compare sessions-based and free-use studies on the amount
of participant-to-robot time, we present an estimate of the total interaction time per
participant for each study. We estimated the total interaction time by multiplying
the number of sessions by the session length for each study that reports both values
(N = 76). Together, the 79 studies demonstrate an average interaction time per
participant of 553.6 minutes (SD = 1173.5), ranging from 10 minutes [123] to 120
hours [43]. As seen in Figure 2.3d, we observe a slight decrease in the number of
studies with fewer than two hours of interaction length published during 2013-2023
(N =17, 41.2%) compared to 2003-2012 (N = 31, 50.0%).

2.4.2 Application Domains, Participants, and Locations

In this section, we classify our corpus of long-term HRI studies according to their
primary domain, participant characteristics, and location of deployment (Figure 2.4).
Early studies in long-term HRI focused mainly on educational settings [124,125], be-
havioral interventions for children with ASD [99,107], and general user perceptions of
robots [84,89]. More recent work spans a wider range of applications—for example,
using robots to support employees in office environments [88] or to promote cognitive
health through physical activity [126]. As detailed below, we organize application do-
mains into seven categories: education, mental and cognitive health, general purpose,
physical health, entertainment and gameplay, and service and workplace.

Here, we also classify studies based on their participant age ranges (ranging from

4We define “free use” as users having complete control over when and how to use the robot. We
acknowledge some researchers may not have reported casual guidance given to participants and that
some participants may have felt implicit pressure to use the robot regularly.
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infants to the elderly) and the number of participants with reported data. Occasion-
ally, the domain dictates the participant type of the study, such as children using
an educational robot, though this is not always the case. Often, the location of a
study is related to its domain and type of participants, such as a rehabilitation robot
for the elderly that is deployed in a nursing home. Because long-term HRI research
often seeks to simulate or prepare for use in the real world, understanding these
contextual relationships is critical. Analyzing how the participant population, study
setting, and application domain interrelate helps researchers evaluate not only the
ecological validity of the deployment but also the scalability, relevance, and potential
barriers to real-world integration. This contextual framing also helps to identify gaps,
such as underrepresented populations or neglected environments, that may limit the

generalizability or impact of current research.

Application Domains

We find that the long-term HRI studies in our corpus fall into the following domain
classifications: FEducation (N = 31, 25.8%), Mental & Cognitive Health (N = 24,
20.0%), General Purpose (N = 21, 17.5%), ASD (N = 20, 16.7%), Physical Health
(N =13, 10.8%), Entertainment & Game-Play (N =7, 5.8%), and Service & Work-

place (N =4, 3.3%). A summary of areas of study per domain is as follows:

« Education (N = 31, 25.8%): Within studies in the Education domain, robot
interactions tend to be focused on tutoring or teaching skills in reading (e.g.,
[44,67,68]), math (e.g., [112,113,127]), language (e.g., [86,101,128]), handwriting
(e.g., [129,130]), and other common academic subjects (e.g., [50,131]). For the
majority of the studies in this domain (N = 26, 83.9%), the population of
interest is children between the ages of 3 and 12, with the robot most often in
a school (N = 17) or the home (N = 6).

« Mental & Cognitive Health (N = 24, 20.0%): Studies within this domain
can be organized into three categories: elder care, condition-specific rehabilita-
tion, or general wellness. Ten studies target cognitive stimulation for elderly
participants, ages 65 or older, either in the individual’s home (N = 2; [100,117])
or care homes (N = 8; [60, 102, 132-136]). Condition-specific studies (N =
8; [43,94,101,110,115,116,137,138]) examine the robot interactions with users
with a diagnosed cognitive disorder such as Dementia, Down Syndrome, or
Alzheimer’s. The remaining seven studies [8,53,64,103,121,126, 139] primarily

examine improving mental and cognitive health in typically-developing adults.
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Figure 2.4: Distribution of Study Qualities. These charts overview of the key at-
tributes in long-term HRI studies conducted over the past two decades. The distribution is
presented across four main dimensions: study domains (a), study locations (b), participant
age groups (c), and countries where the studies were conducted (d). It is important to note
that the largest category, “Other,” in (d) encompasses 20 countries, each contributing less
than 2% to our current dataset.

« General Purpose (N =21, 17.5%): Studies in the General Purpose domain
are largely focused on investigating user perceptions of, and user engagement
with, the robot. For instance, studies in this category have shown that users
enjoyed the robotic interactions (e.g., [65,96]), were motivated to interact with
the robot (e.g., [97,140,141]), and demonstrated changes in their perception of
(e.g., [1,85,142]) or engagement with the robot throughout the study (e.g., [6,42,
84,92,114]). Further studies examined methods for behavioral personalization
and adaptation of the robot due to user preferences (e.g., [105]), used the robot
as a tool for understanding the target population better (e.g., [85,143]), or
evaluated the feasibility of the robot to provide living assistance (e.g., [41]).
General Purpose studies target a wide range of participant groups, from infants
to seniors, in a variety of settings such as the home, a laboratory, daycare, or

school.

« ASD (N =20, 16.7%): Studies in this category explore the use of robots with
individuals with ASD. Several studies in the ASD category would traditionally
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fall within the Mental & Cognitive Health or Education categories; however, we
treat these studies as a separate category due to their large number. Within
studies in the ASD domain, most studies either investigate skills development
or validation of new measurement or prediction techniques. Those in the skills
group often investigate interactions such as verbal communication or social skills
(e.g., [3,5,144,145]). Studies about new measurement techniques focus on vali-
dating methods that predict engagement, build user models, or develop metrics
for specifically the ASD population (e.g., [95,99, 122, 146-148]). The major-
ity of ASD studies focus on interactions with children (N = 16, 80.0%) in a
school (N = 6) or home (N = 5) setting. Within the past half-decade specif-
ically (2018-2023), only a small number of studies have extended these efforts
to adolescents [5,149] or adults with ASD [59], highlighting a significant gap in
current research. Although robots have garnered significant attention for use in
ASD interventions, most existing work remain focused on younger children and
are not designed to support the evolving social needs of individuals with ASD

across the lifespan.

« Physical Health (N = 13, 10.8%): Studies within the Physical Health do-
main primarily fall into two categories: general wellness and condition-specific
rehabilitation. For general wellness, studies focused on supporting exercising
and healthy eating (N = 8, e.g., [52, 150-152]) across a wide range of par-
ticipant age groups, but primarily centered on adults and older populations
(N = 5). These robots are often deployed in a home or laboratory setting.
Condition-specific studies (N = 5) instead support individuals recovering from
a medical event such as surgery, stroke, or a diagnosis of a life-impeding con-
dition [57, 58, 153-155]. Robots for condition-specific support are more often
found in hospitals or rehabilitation centers, almost entirely for elderly users
(N =4).

o Entertainment & Game-Play (N = 7, 5.8%): The studies in this domain
2,66,90, 108,109,156, 157] primarily investigate the potential for engaging and
maintaining user interest with a robotic system via games or other interactive
media. A majority of studies in this domain (N = 5) focus on children younger
than 12 years old in a range of settings, such as a laboratory, school, daycare,

or home.

« Service & Workplace (N = 4, 3.3%): In our corpus, there are currently only
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four studies [84,88,123,139] that investigate robots in the Service & Workplace
domain. These robots are designed to perform tasks related to workplace offices
or other locations that offer services to customers. For example, Vishwanath
et. al. [88] explored how a humanoid robot receptionist could improve staff
productivity in an office setting. While many studies included in the Education,
Physical Health, and Cognitive Health domains are conducted in settings that
arguably offer services (e.g. schools and health clinics), these studies focus on

a specific educational or health outcomes rather than on the workplace itself.?

Upon evaluating study domains over the past 20 years, we find several trends over
time. While the first five years of long-term studies (2003-2007) consisted of a small
number of studies (N = 12), these studies were evenly distributed across six domains:
Mental & Cognitive Health, ASD, General Purpose, Entertainment €& Game-Play,
Education, and Service & Workplace. In contrast, 50% of the studies published in the
following five years (2008-2013) were in the General Purpose domain. A newfound
interest in the Physical Health domain emerged in 2009 [52] and has steadily grown to
the present year. Physical Health, Mental & Cognitive Health, Education, and ASD
all have exhibited steady growth over the past fifteen years, whereas the Service &
Workplace domain has only recently emerged for long-term study.

Many of these domains are inherently suited for long-term study. For instance,
with Education, ASD, and to a certain extent Mental & Cognitive Health and Physical
Health studies, often the goal of the robotic intervention is to support the acquisition
of skills. Developing a new skill, by its nature, requires time to develop and must
be studied as such to show true value. Similarly to skill acquisition, therapies such
as rehabilitation and cognitive exercises also require repeated practice of a certain
activity. In contrast, General Purpose studies are often more related to the explo-
ration of how social robots may integrate into our homes and daily lives. This type
of study requires longitudinal study, as real-world robot applications will not happen
in a single session. For researchers interested in understanding the adoption of robots
in society, long-term study is an important step. In the less represented domains of
Entertainment & Game Play and Service & Workplace, such real-world requirements
still apply, but there may be other challenges. As the Service & Workplace domain is

still relatively new in long-term exploration, researchers may opt to first explore the

SFor example, we classify work such as Rueben et. al. [123] within the Service & Workplace
domain because the authors investigated the impact of a mobile shoe rack at a yoga studio on client
satisfaction. Had the authors investigated the impact of the robot on the individual performance of
yoga students at the studio, we would have classified this work under Physical Health.
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Figure 2.5: Distribution of Application Domains. The chart illustrates changes in the
distribution of studies across application domains over time, grouped in five-year intervals.

problem space, initial usability, and initial user perception with a single-session study
before transitioning to long-term study. The Entertainment & Game Play domain
offers an easy way to test user perceptions of a robot and algorithmic contributions
around engagement; however, researchers may have less interest in this domain now as
more specific and beneficial use cases for social robots have emerged (e.g. supporting

social skills development, rehabilitation, home assistive tasks, etc.).

Participant Types

For the purposes of this review, we classify the participants according to their age
group corresponding to the general stages of psychological development ranging from
infants to seniors. Across our corpus, 57 studies (47.5%) feature children (ages 3
to 12) as the primary participant type, 23 (19.2%) feature adults (ages 18-65), 23
(19.2%) feature seniors (above age 65), four (3.3%, [108,137,140,158]) feature infants
or toddlers (under age 3), and two studies (1.7%, [5,149]) feature teenagers (ages 13 to
18). The remaining 11 studies (9.2%, [42,43,52,53,67,86,96,97,104,123,153]) report
outcomes of the robot interaction to describe mixed demographics across participant

age groups.
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Figure 2.6: Participant Age Distributions Across Domains. This chart illustrates
how participant age groups are distributed across domains. Study domains often reflect the
population of interest, and vice versa.

It is expected that the domain of a study is related to the population of interest of
the study, or vice versa (Figure 2.6). For example, the majority of Mental €& Cognitive
Health studies target the senior population (N = 16, 64.0%) because many studies in
this domain target cognitive stimulation for users with a diagnosed cognitive disorder
such as Dementia or Alzheimer’s. Similarly, the vast majority of studies within the
Education and ASD domains focus on children (N = 42, 82.4%). Studies in the
General Purpose and Physical Health domains contain a diverse range of participant

age groups.

Participant Counts

In our corpus, the number of participants per study varies widely (M = 24.8, SD =
30.4), from a single participant [58,84,100,137] to as many as 228 participants [124].
The distributions of participant counts differ by domain: ASD (M = 14.8, SD =
13.0), Education (M = 36.8, SD = 44.4), Entertainment € Game Play (M = 15.3,
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SD = 10.5), General Purpose (M = 35.8, SD = 32.8), Mental & Cognitive Health
(M = 19.5, SD = 21.9), Physical Health (M = 12.8, SD = 9.4), and Service &
Workplace (M = 11.3, SD = 10.8). The majority of the 14 studies with less than five
participants [5,58,84,85,93,100,103,104,107,137,144,147,153,159] were focused on
providing therapies to protected or sensitive populations, such as those with diagnosed
physical or mental disabilities (N = 10). On the other hand, for the six studies
with more than 100 participants [7,96-98,124,160], research was carried out through
educational systems [98, 124, 160] or with an off-the-shelf commercial home robot
[96,97]. The four studies with the largest sample of participants [7, 98, 124, 160]
were conducted in an educational setting and for children. Although these studies
are outliers in their respective domains due to their sample size, conducting studies
through established school structures likely provides easier access to large numbers
of student participants. Similarly, using a preexisting commercial home robot with
minimal customization likely reduces the burden of designing and deploying systems
in the unstructured and diverse environment that is the users’ homes.

The number of participants directly impacts the types of statistical analysis that
can be performed, as many methods require a minimum sample size to produce re-
liable and valid results. Among studies reporting statistical results (N = 70; e.g.,
between experimental conditions or between different population segments), the dis-
tribution of participant sample sizes tends to larger counts (M = 31.7, SD = 35.6),
with 65.7% with 15 participants or more. Among the remaining studies that do not
conduct statistical analyses (N = 50), the distribution of participant counts tends
toward smaller counts (M = 17.0, SD = 19.3), with 72.0% below 15 participants.
The motivation, expected outcomes, and structure of a specific study can inform the
analyses (e.g., qualitative, quantitative or statistical) researchers choose to conduct.
In Section 2.4.4, we examine the potential factors that influence the results reported

in our corpus of studies.

Study Locations

As long-term studies seek to emulate more real-world scenarios for HRI, the setting
where robot interactions occur is an important study design consideration. Stud-
ies performed in a research facility or laboratory have the advantage of controlling
for environmental variables in order to isolate specific components of interaction. In
contrast, “in-the-wild” environments such as homes or classrooms are more likely

to produce findings that are generalizable to real-world interactions and contexts.
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Figure 2.7: Study Locations Across Domains. The distribution of study location by
domain is illustrated. The location of a study typically aligns with the study’s domain.

However, in-the-wild environments are dynamic and unstructured settings and thus
present greater technical demands and challenges for robot use, design, and deploy-
ment.

In our corpus, most of the studies (N = 103, 85.8%) were conducted in real world
settings, most commonly in participants’ homes (N = 35, 34.0%) or in schools (N =
33, 32.0%). The remaining 17 studies (14.2%) took place in laboratory environments.
Of these, 10 studies [1, 53, 85, 86, 95, 104, 137, 151, 157, 161] were conducted in lab
settings specifically designed to simulate naturalistic environments, such as homes or
workplaces. A complete breakdown of study locations is shown in Figure 2.4b.

As with participant types, the location of a study usually aligns with the study
domain, as shown in Figure 2.7. For instance, many educational robots are deployed
in schools (e.g., [48,50,130,162-165]), with a subset deployed in homes for tutoring
outside of the classroom (e.g., [44,120,166,167]). Similarly, robot interactions that
target physical health rehabilitation are often conducted in hospitals or care facilities
(e.g., [51,58,153]).
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Figure 2.8: Robot Platforms. Illustrated is the distribution of robots employed in
long-term human-robot interaction studies. The largest category, “Other,” encompasses 34
platforms that were each represented only once in our dataset.

Beyond the immediate environment of the robot, the geographic and cultural en-
vironment can influence the results of long-term studies. In our corpus, we find that
41.7% (N = 50) of the studies were conducted in Europe, mainly in the United King-
dom (N = 15); 32.5% (N = 39) of the studies were conducted in North America,
primarily in the United States (N = 35); 18.3% (/N = 22) of the studies were con-
ducted in Asian countries, mainly in Japan (N = 12); and 5.0% of the studies were
conducted in Australia (N = 4) or New Zealand (N = 2). The remaining studies do
not report the location [4,88,95].

2.4.3 Study and Robot Qualities

Researchers have explored a wide range of long-term human-robot interaction modal-
ities across different domains, participant populations, and study settings. In this
section, we identify patterns in our corpus related to the robot platform used, its
level of autonomy, the interaction dynamic (e.g., dyadic, triadic, group), and whether
the robot employed behavioral adaptation or personalization. By categorizing these
core dimensions of long-term HRI, we reveal the diversity of interaction formats and
shed light on how long-term engagements have traditionally been implemented and
studied.

Robot Platform

A robot’s physical form and affordances play a crucial role in shaping the types of
interactions that can be studied. Using commercially available (i.e., “off-the-shelf”)

robots offers several advantages, including physical durability, ease of deployment,
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and the ability to compare findings across studies that use the same platform. How-
ever, these robots often come with inherent design constraints that can limit their
flexibility or suitability for specific research objectives. For instance, Ramnauth et
al. [59] supplemented the widely used Jibo robot [168] with additional sensors to com-
pensate for inaccessible hardware features, highlighting how even popular platforms
may require adjustment to meet the objectives of a study.®

Upon investigation, we find that the NAO robot [169] is the most commonly
used platform in long-term HRI studies (e.g., [50,91, 129, 146, 147,151, 163]), with
30 (25.0%) studies reflecting its widespread availability, ease of programming, and
suitability for a variety of interaction contexts and user populations. The next most
popular robots include: Keepon (N = 7, 5.8%; [54,85,111,126,162]), Jibo (N =7,
5.8%; [3,6,8,59,64,67,166]), Paro (N = 7, 5.8%; [60,94, 101,106, 132,133, 138], and
Pepper (N = 6, 5.0%; [49,51,53,114,118,153]. We provide a brief description of these
most popular robots below. Beyond these five commercially available platforms, only
seven studies (5.8%; [52,84,92, 121, 123, 156, 158]) feature novel, custom robots or
prototypes.

« NAO (25.0%; N = 30): NAO [169] is a small, programmable, table-top hu-
manoid robot with a rich sensor suite and built-in interactions for complex
natural language and facial and gesture recognition. Its popularity in HRI re-
search is likely due to its diversity of affordances and capabilities, the ability to
easily purchase the robot off-the-shelf, as well as its existing popularity lending

itself to easier research reproducibility.

« Keepon (5.8%;N = T7): Keepon [170] is a small, minimalist tabletop robot with
a soft, expressive body capable of moving side to side, up and down, and rota-
tionally. Although it features audio and visual input and is relatively affordable
compared to more complex robots, the commercially available Keepon was a
passive device without onboard sensing or computation. Unlike platforms such
as Nao or Jibo, it was not a standalone, off-the-shelf system and could not be

directly used in HRI studies without significant external augmentation.

« Jibo (5.8%; N = 7): Jibo [171] is a tabletop robot with a more cylindrical form-
factor and a circular display that can rotate expressively in multiple directions.
Similar to NAOQ, it is equipped with audio and video inputs for complex natural

language and computer vision.

6This work is presented as Chapter 6. Additional hardware adjustments to the Jibo platform are
also featured in Chapters 5 and 9.
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o Paro (5.8%; N = 7): Paro [172] is a soft and plush robot designed to look
like a seal and responds to touch, light, and sound in order to express certain

emotional states.

« Pepper (5%; N = 6): Pepper [173], a semi-humanoid on wheels, is the largest
form factor of the top four robots, reaching almost human height with the ability
to navigate an environment. It features a touchscreen on its chest, multimodal
sensors (cameras, microphones, depth sensors), and gestural capabilities. While
offering a rich interaction interface, Pepper’s resultantly high cost and mechan-

ical complexity can pose limiting factors.

Robot Autonomy

Future real-world robots intended for long-term deployment in homes, workplaces,
and other everyday settings will need to operate with full autonomy. However,
achieving robust autonomy in natural, uncontrolled environments presents significant
technical and perceptual challenges. Consequently, the decision of whether—and to
what extent—a robot should be autonomous is a critical design consideration for
researchers.

In our corpus, we observe the use of non-autonomous, semi-autonomous, and
fully autonomous systems. While a fully autonomous robot is most aligned with
real-world applications where the robot’s architecture alone solely directs its behav-
iors, researchers may choose to implement a non-autonomous system via Wizard of
Oz" or teleoperated techniques [174]. Such techniques enable researchers to imply
complex levels of autonomy without the technical requirements of building an au-
tonomous system. In between non-autonomous and fully autonomous systems lies
semi-autonomous systems, in which researchers have access to a human-in-the-loop
method of updating robot behaviors while deployed. Such a system can enable re-
searchers to correct robot errors or introduce deeper levels of personalized interactions.

We find that 91 studies (75.8%) in our corpus utilize fully autonomous systems, 18
(15.0%) use non-autonomous systems, and 10 (8.3%) use semi-autonomous systems.
We further observe a remarkable growth of 450% in autonomous design between
2003-2012 (N = 14) and 2013-2023 (N = 77). We do not observe this significant
growth in semi-autonomous or non-autonomous design between 2003-2012 (N = 12)
and 2013-2023 (N = 16).

A method in which participants interact with a robot system that users believe to be au-
tonomous, but is actually operated or partially operated by another human
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Such growth may reflect the field’s increasing desire to explore the open questions
and practical challenges of deploying interactive robots in real-world, long-term set-
tings. A central issue in these contexts is sustaining user engagement without the
presence of a researcher to guide or scaffold the interaction. As discussed in Sec-
tion 2.4.3, designing effective autonomous behaviors depends heavily on the nature
of the robotic system—its physical design, sensor suite, interaction modalities, and
computational capabilities. A simpler robot may be easier to deploy and more robust
in uncontrolled environments but may offer a limited behavioral repertoire, poten-
tially reducing its capacity to maintain meaningful or varied interactions over time.
In contrast, a more complex robot can support a broader range of behaviors and
interactions, but introduces challenges related to usability, user comprehension, and
content design. If the robot’s functionality is too opaque or overwhelming, users may
struggle to engage effectively.

Another fundamental design decision in the development of autonomous behavior
concerns how proactive the robot should be. A robot that is too passive may fade
into the background and be ignored, while a robot that initiates too frequently or
at inopportune moments risks becoming intrusive, irritating, or socially inappropri-
ate. Determining the right balance—where a robot can recognize opportunities for
meaningful engagement and respond appropriately—is an ongoing challenge and a
rich area for research.

These complexities illustrate that designing autonomous robot behavior is not
only a technical endeavor but also one that involves many social and psychological
considerations. As such, the development of autonomous behaviors that are context-
sensitive, adaptive, and user-aware remains a crucial and fertile frontier for long-term

HRI research.

Interaction Dynamic

Human-robot interaction can take on many forms with respect to the social config-
uration of the interaction. We investigate the differences in studies that are dyadic
(one-on-one between the human and robot), triadic (two humans interacting with one
robot), family (one robot in a household interacting with multiple family members),
group (one robot interacting with multiple humans in a group setting), observer (the
human is observing a different human or group interacting with a robot) and mized
(a combination of any of the prior four categories) interactions.

In general, most long-term studies are dyadic (N = 73, 60.8%), with 16 studies
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Figure 2.9: Robot Operation and Interaction Types. The charts display the distri-
butions of robot operation (a) and study interaction dynamic (b) represented in our corpus,
organized by decade.

(13.3%) of group interactions, 12 studies (10.0%) of mixed interaction dynamics,
nine studies (7.5%) of triadic interactions, five studies (4.2%) of family interactions,
and five studies (4.2%) of observer interactions. In comparing the distribution of
interaction dynamics between the previous decade and 2013-2023 (Figure 9.4), we
see a shift in the percentage of dyadic studies and group studies. Dyadic studies have
grown in representation, from 42.3% to 66.0%, while group interaction studies have
decreased in representation, from 38.5% to 6.4%.

One might have anticipated that as the field of long-term HRI matured, it would
naturally expand toward more diverse interaction dynamics beyond dyadic (one robot,
one user) configurations. However, our corpus suggests that dyadic interactions re-
main dominant. Several plausible factors may contribute to this trend.

First, longitudinal studies are inherently resource-intensive and, therefore, design-
ing for a single-user interaction significantly reduces complexity. With dyadic studies,
researchers can tailor the robot’s behavior, dialogue, and sensing to a single partici-
pant without having to account for the added variability of group dynamics, such as
turn-taking, social hierarchies, or shifting roles. This simplification extends to logis-
tical and ethical considerations as well—recruiting and obtaining consent from one
participant is much easier than from multiple group members, especially in sensitive
domains.

Second, the prevalence of studies in the education and health domains in the
past decade may help explain the persistence of dyadic formats. These domains
often center on individual outcomes, such as a student’s learning gains or a patient’s
behavioral improvements. While caregivers, teachers, or therapists are frequently
involved in the broader intervention, the primary outcome measures tend to focus
on the performance or behavior of a single individual, making a dyadic setup more

practical for both design and evaluation. In contrast, general-purpose robots intended
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for home use are more likely to interact with entire families, and workplace robots may
need to support multi-user coordination or collaboration, requiring more sophisticated
interaction dynamics.

Finally, the rise of quantitative research methodologies over time may also play a
role, as we first mentioned in Section 2.4.4. Quantitative metrics, such as gaze dura-
tion, task performance, or usage logs, are easier to isolate and interpret in single-user
contexts, where tracking and attribution are straightforward. Likewise, personaliza-
tion and adaptation techniques are more feasible to implement and maintain over
time when tailored to an individual’s unique profile, preferences, or developmental
trajectory in dyadic interactions rather than to that of a fluctuating group of users.
We discuss this further in Section 2.4.3.

Taken together, these factors suggest that the prevalence of long-term dyadic HRI
studies reflects not just historical precedent but also practical, methodological, and
domain-specific considerations that continue to shape how interactions are designed
and studied.

Personalization and Adaptation

Personalization [175] and adaptation [176], two methods to tailor the robot’s behav-
iors and interaction with a particular user, have been shown to improve outcomes
for long-term HRI [141,162,177]. Such methods foster a sense of rapport, trust, and
enjoyment in users, leading to more meaningful and engaging interactions. In addi-
tion, personalization and adaptation can allow the robot to maintain its relevance and
usefulness over time, adapting to varying contexts, user preferences, and situational
demands. We find that 47 studies (39.2%) in our corpus utilize personalization or
adaptation in their robot design. They are roughly evenly distributed across domains.

Some common methods for personalization and adaptation include adjusting task
difficulty based on prior performance (e.g., [3,48,127]) or utilizing affect recognition
or physiological data to improve user engagement (e.g., [90, 135]). Many studies
specifically investigate the effects of personalization and adaptation methods as their
main research objectives (e.g. [48,49,68,98,105,112,113,141,157,159,162,177]). These
studies have demonstrated that adaptive or personalized system results in increased
user satisfaction, improved performance and effectiveness, enhanced user engagement,
and improved flexibility in changing environments.

Overall, we observe a marked increase in the proportion of long-term HRI studies

that incorporate personalization and adaptation techniques. In our corpus, 43% (N =
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40) of studies from the most recent decade (2013-2023) include some form of user-
specific behavior, compared to only 23% (N = 6) in the preceding decade (2003-2012).
Several factors likely contributed to this upward trend.

First, as long-term HRI research has matured, studies have begun to shift from
exploratory proof-of-concept deployments to more targeted investigations of specific
interaction strategies. With engagement generally expected to decline over time—
especially in real-world, unsupervised settings—there is growing recognition that
maintaining user interest requires systems that can adapt meaningfully to individ-
ual users. Personalization offers a promising strategy to mitigate habituation and
improve the perceived relevance and effectiveness of robot behaviors in repeated in-
teractions.

Second, the technological landscape has evolved considerably over the past two
decades. Advances in computer vision, natural language processing, biometric sens-
ing, and real-time data analytics have made it significantly easier to gather and inter-
pret user-specific information. These tools enable more sophisticated user modeling
and support dynamic behavioral adjustments based on user preferences, affective
state, skill level, or prior interactions. The increasing accessibility of these technolo-
gies reduces the barrier to entry for the implementation of adaptive systems in HRI
research.

Finally, the growing interest in user-centered and inclusive design principles within
the HRI community may also play a role. Personalization aligns well with the larger
goals of creating socially intelligent systems that can recognize and respond to diverse
user needs, backgrounds, and abilities. As a result, adaptive behaviors are no longer
viewed as experimental extras but increasingly as core components of a successful

long-term interaction design.

2.4.4 Result Types and Measures

Long-term HRI studies are varied in their type of research findings, with a mixture of
quantitative and qualitative insights. In our corpus, case studies and ethnographies
are present alongside quantitative studies and those that seek statistically significant
differences between conditions. In this section, we outline the ways long-term HRI
researchers have pursued different types of measured results. We additionally report
patterns on two specific measures that are particularly relevant to long-term studies:

pre/post analyses and long-term engagement.
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Qualitative versus Quantitative Approaches

A fundamental decision long-term HRI researchers must make is whether to pursue a
qualitative or quantitative methodology, or a blend of both approaches. This choice
is multifaceted and hinges on several motivations that must be carefully weighed.
Qualitative research often involves exploratory research questions rather than setting
experimental conditions to test a hypothesis. Reporting qualitative data can provide
insights into user preferences, challenges, and needs as well as serve as a foundation for
new hypotheses or theories [59,123,156]. Examples of qualitative measures in our cor-
pus include interviews, open-ended questionnaires, experimenter observation, video
labeling, and diaries. In contrast, quantitative research typically facilitates objective
measurements and evaluations of specific outcomes or performance metrics. Exam-
ples of quantitative measures in our corpus include: test performance, game scores,
robot usage rates, interaction type counts, standardized surveys, custom surveys of-
ten containing Likert or similar scales, etc. Such metrics can be crucial in assessing
the effectiveness or efficiency of robot interventions, measuring user perceptions, or
evaluating task completion rates.

In our corpus, 49 (40.8%) studies report both qualitative and quantitative results,
33 (27.5%) report only qualitative results, and 25 (20.8%) studies report only quan-
titative results. The measures and metrics employed by researchers are often specific
to the domain, participant type, and setting, and we encourage readers to consult
Appendix A to find long-term studies with similar deployments as examples.

We find that the percentage of studies with quantitative results (either quantita-
tive only or both quantitative and qualitative) has risen over the years, with 58.3%
(N = 70) in the current decade versus 13.3% (N = 16) in the prior decade. With
regard to domains with at least 10 total studies: we find that 77.4% of Education
studies, 76.9% of Physical Health studies, 75.0% of ASD studies, 72% of Mental &
Cognitive Health studies, and 68.2% of General Purpose studies have quantitative
results. In contrast, the percentage of studies with qualitative results (either qual-
itative only or both quantitative and qualitative) has decreased from the previous
decade (76.9%, N = 20) to the current decade (67.0%, N = 63). We find that the
distribution of these results types varies more widely across domains in comparison
to quantitative results. The large majority of Mental and Cognitive Health (84.0%,
N = 21), Physical Health (76.9%, N = 10), and ASD (75.0% N = 15) studies con-
tain qualitative studies, whereas a smaller majority or minority of General Purpose
(63.6%, N = 14) and Education studies (48.4%, N = 15) contain qualitative results.
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These differences may be explained by the inherent nature of the application
domain. For instance, the Education domain often features clearly defined learning
goals, student testing protocols, and standardized measures of academic achievement,
making it more amenable to quantitative evaluation. Additionally, education-focused
HRI has a longer history and is likely moving from exploratory system-building toward
more rigorous assessments of learning outcomes and efficacy, thereby favoring more
quantitative metrics. In contrast, Mental & Cognitive Health is a relatively newer
domain in HRI, particularly for long-term interactions. Many of these studies focus
on underserved or vulnerable populations, including individuals experiencing stress,
cognitive decline, or social isolation. These contexts often benefit from early-stage
qualitative research to understand complex behavioral changes, subjective well-being,
and contextual factors that are not easily reduced to numbers. Researchers may
prioritize narrative accounts, interviews, and observational data to assess therapeutic
relevance or emotional resonance before scaling to larger quantifiable trials.

The ASD domain sits at a unique intersection of both approaches. On the one
hand, the field benefits from well-established clinical benchmarks and standardized
diagnostic instruments (e.g., ADOS, Vineland, SRS), which facilitate robust quanti-
tative assessment of social, cognitive, and behavioral outcomes. On the other hand,
individuals with ASD exhibit high heterogeneity in abilities, needs, and preferences,
which complicates broad generalization and demands fine-grained, individualized in-
terpretation. Moreover, many interventions rely on caregiver, teacher, or therapist
reports to contextualize the child’s behaviors—often requiring rich qualitative insight.
As a result, HRI research in the ASD domain frequently combines both qualitative
and quantitative measures. For example, gaze tracking, turn-taking frequency, or
response latency can be paired with parental interviews, annotated video logs, or
open-ended caregiver feedback. This mixed methods approach allows researchers to
assess not only what changed over time, but also why the intervention may have
succeeded or failed for a particular individual. The use of both types of data is es-
pecially crucial for capturing the nuances of long-term change, emotional trust, or
developmental shifts that may emerge subtly and gradually.

Given the increasing interest in deploying robots in homes and clinics for autism
therapy, this domain is particularly well positioned to benefit from nuanced evaluation
frameworks that recognize both standardization and individual difference. As the field
evolves, future studies may further explore hybrid methodologies that incorporate
adaptive personalization with both subjective and objective evaluation tools to better

capture the complex trajectories of individuals on the spectrum.
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Study Conditions

For quantitative studies, conducting experimental conditions can help establish causal
relationships between variables and make comparisons between different conditions.
By including a control condition, researchers can determine whether the experimental
manipulation or intervention likely causes the observed effects. In our corpus, 47
studies (39.2%) used quantitative methods with preset experimental conditions in
pursuit of statistical significance. Often, these conditions were on (a) the use of a
robot versus no robot (e.g., using a robot with a set of smart sensors for elder care
versus just the sensors themselves [117]), (b) the inclusion of a specific interaction or
approach versus without (e.g., including personalization or not with a general purpose
robot for children [141]), or (c) between different types of populations (e.g., special
needs children and typically developing children [55]). We find that the percentage
of studies with conditions-based experimentation has increased in the current decade
(43.6%; N = 41) compared to the previous (23.1%; N = 6), likely following the trend

of increasing quantitative studies.

Pre/Post Experiment Analyses

To evaluate the long-term effects of robotic interventions, a common approach is to
analyze specific metrics collected in the same way before and after the experiment.
Among the studies in our corpus that employed quantitative analysis, 20.9% (N = 18)
utilized such pre/post experiment comparisons.

There are multiple common methods used for this approach. One such method is
Applied Behavior Analysis (ABA), commonly employed in clinical and psychological
research to evaluate how specific interventions influence behavioral outcomes. For
example, Jeong et al. [8] used ABA to demonstrate that a companion-like robot sig-
nificantly improved participants’ psychological well-being, while Scassellati et al. [3]
found that robot-assisted interventions improved related clinical scores in children
with ASD. In educational contexts, the most common metric involves comparing ed-
ucational test responses and scores before and after robotic deployment (also known
as “pre-tests” and “post-tests”). For instance, several studies assessed the effective-
ness of fixed versus personalized tutoring assistance [48,113,162,164] and examined
the impact of different scaffolding behaviors exhibited by robots [163]. Beyond for-
mal testing, other approaches to before-and-after assessment include measuring be-
havioral changes in school-age children over the course of interaction sessions [118],

analyzing shifts in attitudes or perceptions through pre- and post-intervention ques-
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tionnaires [1,139], and collecting interview-based feedback to gain qualitative insights

into participants’ experiences and behavioral developments [120].

Measuring Long-Term Engagement

While long-term HRI studies employ a wide range of qualitative and quantitative
measures, we highlight one particularly salient metric in this review: long-term en-
gagement (LTE). In our corpus, 45 studies (37.5%) explicitly measured LTE in some
form. This metric has particular relevance for long-term HRI research for several key
reasons.

First, LTE serves as a critical indicator for determining whether a study has
moved beyond the novelty effect, as described in Section 2.2.1. By tracking changes
in user engagement over time, researchers can assess whether observed outcomes are
sustained or are merely artifacts of initial user interest. Without accounting for this
temporal factor, studies risk misattributing early positive responses to the robot’s
design or effectiveness, rather than to transient novelty.

Importantly, six studies in our corpus explicitly attempted to measure or char-
acterize the role of novelty in shaping participant behavior or outcomes [41-43, 53,
100,115]. These efforts underscore the importance of engagement as both a research
outcome and a methodological checkpoint in longitudinal work.

LTE is also central to the design and evaluation of adaptive and personalized
systems (as detailed in Section 2.4.3). By capturing longitudinal engagement pat-
terns, researchers can gain deeper insight into which interaction strategies sustain
user interest and satisfaction over time—insights that are critical for refining system
behavior and enhancing the overall quality and relevance of the HRI experience. In
our corpus, 24 studies explicitly link personalization or adaptation with engagement
outcomes, demonstrating how user-tailored interactions may influence long-term use;
details of these studies can be found in Appendix A.

Moreover, LTE is not only a means of evaluating system performance. It can also
be a primary research goal in its own right. Several studies in our review, for example,
focused on understanding patterns of user disengagement or identifying the factors
that lead to drop-off in daily robot use, particularly in home environments.

Currently, there is no standardized approach for measuring LTE, and the form it
takes often depends on the nature of the interaction being studied. In our review, we
identified seven common categories of LTE measurement methods, drawn from the

diverse practices used throughout the corpus.
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o Self-reported: This method uses surveys to directly ask users about their levels
of engagement over time. Likert scales were often used with this approach, with
participants rating questions such as: “How often have you used the robot in the
last period?” [96], “I think I would like to use this system frequently” [117], and
“I think I could spend a good time with [the robot]” [4]. Some studies instead
reported insights from a series of user interviews that asked qualitatively about
engagement with a robot. Overall, 28.9% (N = 13, [4,58,68,93,96,109,117,118,
121,141,154,156,165]) of studies measuring LTE used self-reported methods.

o Interaction times: This method uses temporal measures of human-robot in-
teractions to gauge engagement in the moment and compare these metrics over
time. A common method was measuring the duration of robot usage per us-
age instance, with longer durations as an indication of higher engagement. For
instance, Scassellati et al. [3] showed that children played with a robot for a
similar average amount of time during the first five sessions of use in comparison
to the last five of 23 sessions. Another method was to measure the amount of
additional time participants chose to spend with the robot (e.g., [112]). Out
of the studies measuring LTE, eight (17.8%) measured it using an interaction
time approach [3,91,112,114,119, 120, 150, 157].

e Annotations: This method was used on recordings of study sessions to hand
annotate user engagement labels during robotic interactions. Trends in the an-
notations were then compared over time. For instance, Clabaugh et al. [177]
annotated a video of children with ASD interacting with a social robot, bas-
ing engagement levels on whether a child was “paying full attention to the
interaction, immediately responding to the robot’s prompts, or seeking fur-
ther guidance or feedback from others in the room.” In total, 13.3% (N = 6;
(48,108,110, 145,148,177]) of studies measured LTE using annotations.

o Count-based: This method includes counting the number or rate of certain
types of interactions, such as games or activities, that the user performed with
the robot over time. For example, Kanda et al. [124] utilized wireless tags to
identify individual children who used the robot, and how often, in order to find
patterns of drop-off. The dropout rate of users between two periods of time
can also be calculated from counts of robot versus control use. For example,
Barco et al. [43] used this method to show that a robot-supported rehabilitation

program had less user dropout than without a robot. A counting technique
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often used in consumer electronics is reporting the daily active users of a device
longitudinally. Zhao and McEwen [44] used this method of reporting to find that
the daily active users of a Luka robot for reading with children dropped from
20 to six over the course of 180 days. Overall, 11.1% (N = 5; [2,42,43,56,124])

of studies measuring LTE used some count-based approach.

Sensor-based modeling: Several studies employed vision and audio inputs
with machine learning methods to estimate user engagement, either in real
time or through post-hoc analysis. Commonly extracted features included af-
fect or mood, body posture, vocal tone, and gaze behavior. These predicted
engagement metrics were then tracked and analyzed over time. In total, 11.1%
(N = 5; [48,90,122,159,166]) of the studies that measured LTE primarily relied

on this type of sensor-based approach.

Behavioral observation: One approach to measuring LTE involves live, in-
person observation of user behavior during interactions with the robot. This
method relies on researchers’ subjective interpretations of engagement, often
informed by repeated exposure to participants over time. For example, Michaud
et al. [144] used direct observation to record how children would proactively
assist the robot when the robot did not appear to react correctly to certain

stimuli.

Mixed: Seven studies (15.5%) [55,105,113,116,129,131,178] employed a com-

bination of the above approaches to measure LTE.

2.5 Discussion

The volume of long-term HRI research has grown substantially, increasing from 26

published papers between 2003 and 2013 to 94 papers in the more recent decade.

This surge reflects a growing commitment to understanding how robots interact with

and influence users over extended periods of time.

Our analysis revealed several encouraging trends in long-term HRI research over

the past two decades. In particular, we observed a broad representation in age groups,

ranging from toddlers to older adults. However, a key gap emerged in the relative

scarcity of studies throughout the lifespan—particularly those involving teenagers,

who remain underrepresented despite their distinct developmental trajectories and
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social needs. We explore this research gap and the opportunities it presents in greater
detail in Section 2.5.1.%

Another positive trend is that most of the studies we analyzed involved the robot
operating entirely autonomously (75.8%) and in situ (85.8%), mirroring the real world
environments and contexts in which they will need to function. These trends sug-
gest an increasing alignment between research conditions and the environments in
which robots are ultimately expected to operate. Even among the smaller subset
of lab-based studies (14.2%), researchers frequently designed the physical and social
context to simulate naturalistic environments, such as mock living rooms or classroom
setups, helping to elicit user behavior that more closely mirrors real-world interaction
patterns.

We also observed a strong correspondence between a study’s application do-
main and its deployment environment. Educational robots were commonly tested in
schools, therapeutic robots in rehabilitation or clinical settings, and eldercare robots
in residential care facilities. Although this alignment may seem intuitive, it often
requires substantial logistical effort and institutional collaboration to place robots in
these environments. The consistency in this alignment underscores the field’s increas-
ing commitment to ecological validity in long-term HRI research.

In the following sections, we begin by identifying key gaps and emerging opportu-
nities in the field (Sections 2.5.1-2.5.3), informed by the evolution of long-term HRI
over the past two decades. We then offer a series of design recommendations (Sec-
tions 2.5.4-2.5.6) to guide researchers in designing and evaluating long-term robotic
systems in real world contexts. Finally, in the interest of transparency and rigor,
we acknowledge several limitations of this review and suggest avenues for addressing

them in future research (Section 2.5.7).

2.5.1 Opportunity: Designing for Teenage Participants

Our analysis only identified two long-term HRI papers (1.7% of our corpus) that
focused their study on teenagers (ages 13-17). The first study focused on teenagers
with ASD and severe developmental disabilities. It analyzed the impact of a robot on

their communication skills in secondary school and showed the potential for robots

8In parallel with the limited representation of teenagers, our review also revealed a striking
absence of long-term HRI studies involving adults with ASD (Section 2.4.2). At the time of writing,
only one such study had been published: our own work, detailed in Chapter 6. While this section
focuses specifically on teenagers, we underscore that the near-total lack of research on adults with
ASD represents an equally urgent gap and a critical direction for future HRI work. Because this
issue extends beyond the long-term HRI literature, we examine it more thoroughly in Chapter 3.
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to improve communication [5]. The second paper also focused on teenagers with
ASD, and the authors found a link between the teenagers’ sensory profile and their
capabilities to imitate a robot [149]. Given the very limited number of long-term HRI
studies involving teenage participants, we identify this as a clear and pressing gap in
the literature.

Notably, our review did not uncover any studies that examined how neurotypical
teenagers engage with robots over extended periods. This presents a wide range of
open research questions. For example, how do teenagers interact with robots in home
environments, especially in the presence of family members? How might they discuss
or share their experiences with peers, and what role does peer perception play in
shaping engagement?

In particular, we highlight two domains that warrant deeper exploration: educa-
tion and mental health. Many long-term HRI studies involving younger children have
demonstrated positive educational outcomes, yet little is known about how such ben-
efits may extend to teenagers—an age group for whom identity formation and future
planning are especially salient. Robotic systems may offer personalized support or
motivation during this formative period. Similarly, mental health represents another
vital frontier. The World Health Organization estimates that one in seven adolescents
(ages 10-19) experiences a mental health disorder [179]. Given the growing body of
research demonstrating the potential of robots to support mental and emotional well-
being in other age groups, long-term HRI studies targeting adolescent mental health
could yield significant impact and insight.

Another important open question is whether teenagers will adopt and engage with
robotic technologies in a manner comparable to other age groups. Research suggests
that teenagers have distinct relationships with technology, shaped not only by their
developmental stage but also by strong social influences. For instance, adolescents
often calibrate their technology use in response to peer norms and perceptions [180],
with peer endorsement playing a major role in shaping how and whether technologies
are embraced [181,182]. In addition, teens are often the first to adopt new technologies
[183], making them a critical population to understand the emerging patterns of use
and acceptance.

Given these dynamics, it is especially important to examine how teenagers interact
with robots over extended periods of time. Their initial enthusiasm may be driven by
novelty, but their sustained engagement is likely to hinge on whether the robot aligns
with their evolving identities, social environments, and perceived value. In this way,

teenagers can provide a particularly sensitive testbed for understanding the novelty
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effect—a core concern in long-term HRI as we introduced in Section 2.2.1—given
that they are highly attuned to technological trends and are quick to disengage from
tools that they find unauthentic, stigmatizing, or socially obsolete. Studying how the
novelty effect manifests and fades for this population could yield insights that not
only improve robot design for teens but also inform broader principles of engagement

across other user groups.

2.5.2 Opportunity: Exploring Workplace Integration

A second area we have identified as needing further exploration is the long-term
deployment of robots in workplace settings, particularly focusing on office or business
environments (rather than schools or hospitals, as explained in Section 2.3). With
this categorization, we identified only four papers in which robots were tested for
extended periods in workplaces. The first was an experiment in which a robot acted
as an assistant in a collaborative workspace, helping workers with routine day-to-day
tasks [88]. The second paper compared different types of robots as they coached
employees on mental health, specifically in the workplace [139]. The third paper
investigated robots that provide break management at desks [121]. Lastly, the fourth
paper explored the social aspects of a fetch-and-carry robot designed to assist motion-
impaired users in an office environment [84].

Despite the limited amount of prior research in workplace environments, most
people spend a significant portion of their lives at work, dedicating approximately
forty hours or more per week to it. Therefore, we believe that it is important to study
how robots can assist and interact with us in the workplace. Many open questions
remain about how robots might impact work environments—will they be accepted
and incorporated organically by employers and employees? Will robots increase or
decrease productivity? How will they affect the well-being of employees?

In addition to office-like settings, industrial and factory environments represent
another prominent category of workplaces. Although numerous studies have exam-
ined collaborative and manufacturing robots in short-term or single-session contexts,
we did not identify any comprehensive long-term HRI investigations within this sub-
domain. This absence is notable given the scale and technological relevance of the
sector. For instance, manufacturing accounts for approximately 8% of the workforce
in the United Kingdom alone [184], and robots are already widely deployed in these
settings, with their presence continuing to grow rapidly [185].

The lack of long-term studies in this domain leaves important human-robot inter-
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action questions unresolved. Chief among these are whether robots will be accepted by
workers over extended periods—particularly amid rising concerns about job displace-
ment and automation [186]—and how these systems can cultivate trust, coordination,
and effective working relationships with human collaborators. Understanding long-
term dynamics in manufacturing contexts is essential to ensure not only technical
integration but also social acceptance and sustainable deployment.

Finally, future research should broaden its scope to include the diverse range of
workplace environments that remain underexplored in long-term HRI studies—such
as restaurant kitchens, service industry settings, construction sites, and other non-
office, non-industrial domains. Fach of these contexts presents unique social, spatial,
and operational dynamics that can shape how robots are perceived, integrated, and
used over time. A key question for future work is how robots can meaningfully
contribute to these settings in the long term—mnot only through functional assistance,
but also by enhancing worker well-being, safety, and collaboration.

Moreover, while students and patients have been frequently studied as primary
participants, gaining insight into the experiences and perceptions of other key work-
place stakeholders—such as teachers, aides, and administrators in schools, or doctors,
nurses, and support staff in hospitals and eldercare facilities—can provide a more com-
plete and context-sensitive understanding of robots’ roles in human systems. This
expanded perspective is particularly important given the growing body of evidence
suggesting that robots can contribute to improved workplace mental health [139],

support healthy work practices [121], and even enhance productivity [88].

2.5.3 Opportunity: Standardizing Long-Term Study Metrics

Throughout our analysis of the papers included in this review, we observed frequent
use of widely adopted HRI survey instruments such as the Godspeed Questionnaire
Series [187] to assess participant perceptions of robots, the Robotic Social Attributes
Scale (RoSAS) [188], which evaluates judgments of a robot’s social characteristics,
and the Negative Attitudes toward Robots Scale (NARS) [189], which measures aver-
sive predispositions toward robots. These standardized tools have provided valuable
common ground for comparing results across studies with different robots, participant
groups, and interaction contexts.

However, many of these surveys were not originally designed or validated for use
as repeated measures over time. In long-term HRI studies, these instruments are

often administered multiple times to assess evolving perceptions, but their psycho-

58



metric stability under such longitudinal conditions remains uncertain. For example,
the Godspeed questionnaires were initially developed to guide design decisions dur-
ing robot prototyping, not to track attitudinal change across extended interactions.
Indeed, the authors themselves caution that human perception of robots is “not sta-
ble” [187] and is likely to shift as users become more familiar with a robot.

Given the increasing prevalence of longitudinal studies in HRI, it is worth ask-
ing if the field now requires updated or entirely new instruments that are explicitly
designed and validated to measure changes in perception, trust, acceptance, and en-
gagement over time. Such tools could offer greater reliability and interpretability in
long-term settings, ensuring that researchers capture meaningful trends rather than
measurement artifacts.

Thus, our final suggested opportunity for future research lies in the development
and validation of standardized measurement tools tailored specifically for long-term
HRI. We argue that existing instruments are limited in their ability to capture the
dynamic and evolving nature of human-robot relationships—particularly in relation
to the persistence of the novelty effect and the challenge of sustaining user engage-
ment over extended periods. While tools such as the Godspeed, RoSAS, and NARS
questionnaires have been invaluable in establishing foundational insights, our review
did not identify any survey instrument that systematically addresses these long-term
dynamics in a standardized manner.

To advance the field, we propose two complementary directions. First, researchers
may consider extending and updating existing tools to explicitly incorporate con-
structs relevant to longitudinal interactions, such as relationship progression, habitu-
ation, and sustained trust or interest. Second, future work should empirically validate
the use of these commonly adopted instruments in repeated-measures contexts to en-
sure their reliability and interpretability over time.

Another important direction involves developing standardized approaches to as-
sessing specific long-term interaction qualities—particularly the novelty effect and
LTE. For example, there is currently no consensus on how to determine when the
novelty of a robot has “worn off,” nor is there a standardized method for measuring
sustained engagement over time. As noted in our review (Section 2.4.4), the studies
that measured LTE employed a wide range of methods, including behavioral obser-
vations, surveys, and sensor-based techniques. While variation is expected—given
differences in research goals, participant populations, environments, and application
domains—establishing more consistent measurement frameworks within similar study

types would offer substantial benefits. As long-term HRI continues to grow as a field,
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Figure 2.10: Distribution of Session-Based Studies by Sessions & Sample Size.
Four primary categories emerge: studies with < 10 sessions and < 20 participants (Group
I, lower left, purple), studies with > 10 sessions and < 20 participants (Group II, lower
right, green), studies with < 10 sessions and > 20 participants (Group III, upper left, blue),
and studies with > 10 sessions and > 20 participants (Group IV, upper right red). Four
studies [5-8] were considered outliers and are excluded from this plot for clarity.

having standardized benchmarks and methods will not only facilitate cross-study
comparisons but will also accelerate the development of more robust and impactful

long-term robotic interactions.

2.5.4 Recommendation: Determining Core Study Features

For researchers planning a long-term HRI study, determining the appropriate duration
of the study is a critical decision with implications for scheduling, funding, participant
recruitment, and technical feasibility. Our analysis suggests that this decision is often
closely linked to both the number of participants involved and the nature of the data
being collected—whether quantitative, qualitative, or a combination of both.

Figure 2.10 shows four primary categories, as determined by observation. Group
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I encompasses session-based studies with fewer than 10 sessions and fewer than 20
participants (N = 35 studies; 40.7%). These studies may be motivated by a blend
of practical considerations. Here, resource limitations or the inherent complexity of
sustained HRI interactions could steer researchers toward concise study durations and
small participant pools. Group II features studies with 10 or more sessions but fewer
than 20 participants (N = 14 studies; 16.3%). With a relatively small number of
participants but many sessions, such studies emphasize longitudinal depth or within-
subject analysis, not statistical power or broad participant representation. In the third
category (Group III), characterized by studies with fewer than 10 sessions and 20 or
more participants (N = 29 studies; 33.7%), researchers can seek to gather insights
from diverse participants despite the comparative brevity of the study. Lastly, the
smallest cluster (Group IV') comprises studies with 10 or more sessions and 20 or more
participants (N = 8 studies; [6-8,44,85,140,143,163]). A high number of participants
for a long amount of time is ideal from a research perspective, but it is a practical
and logistical challenge. In this group, researchers may be driven by the desire for a
comprehensive exploration within a more specialized context.

We present these categories not as a rigid classification system, but as a reflective
tool to help researchers consider where their study might fall—and where they aspire
for it to fall. When faced with the necessary question, “How long should my study
be?,” researchers should consider study length in relation to participant type and
measurement goals. For instance, a qualitative study with a small number of users
may benefit from longer durations to yield meaningful insights; however, a quantita-
tive study aiming for statistical significance may require a larger sample size, thereby
favoring shorter interactions for feasibility. We encourage researchers to consult our
corpus as a practical reference for how prior studies have navigated these trade-offs

across different domains, settings, and participant populations.

2.5.5 Recommendation: Sustaining Engagement With Novel

Behaviors & Personalization

As highlighted in Section 2.4.3, robots that demonstrate a range of varied and respon-
sive behaviors tend to sustain user engagement more effectively than those with rigid
or repetitive interaction patterns. One compelling strategy to achieve this variability
is through personalization: that is, tailoring the robot’s behavior to align with the
preferences, needs, or learning styles of individual users [48,113]. By building a model

of the user’s behaviors and adapting accordingly, the robot can deliver interactions
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that feel more relevant, responsive, and human-like. Prior research has shown that
personalized robotic systems can lead to enhanced learning outcomes [162], stronger
engagement, and increased rapport between the user and the robot [190], all of which
are critical for successful long-term interaction.

Our analysis shows that only a minority of the studies in the corpus (39.2%)
incorporated robot adaptation or personalization during interactions, although this
number is steadily increasing over time. We strongly encourage future researchers
to integrate adaptation and personalization mechanisms into their robotic systems
where appropriate, as these features are often critical to sustaining long-term user
engagement, acceptance, and continued use. There are a wide range of strategies to
introduce adaptation in long-term HRI. For example, some studies have maintained a
continuous backstory for the robot across sessions to create a sense of narrative conti-
nuity [3]. Others have designed robots capable of skill progression, allowing them to
display increasingly complex behaviors over time [130], or have incorporated multiple
activities to vary interaction and prevent monotony [190]. Personalization can also
be achieved in diverse ways, such as remembering and reusing user-specific informa-
tion like names [141], modeling individual skill levels to tailor tutoring behaviors [49],
recognizing the user’s current context or activity [116], or learning and responding to
user preferences over time [104]. These techniques illustrate the breadth of opportu-
nities for creating socially responsive, user-aware robots capable of fostering deeper
and more meaningful long-term interactions.

We encourage researchers to consult this review as a resource for identifying prior
long-term HRI studies that align with their intended domain, population, and inter-
action context—both as methodological inspiration and as a basis for comparison.
For those seeking more focused insights into adaptive and personalized human-robot
interactions, several dedicated reviews explore the technical and design challenges in
this space, including works by Gasteiger et al. [191], Ahmad et al. [176], and Hellou
et al. [175]. At the same time, this area remains ripe for innovation. With ongoing
advances in artificial intelligence, machine learning, and sensing technologies, there
is a growing opportunity to define novel methods of adaptation and personalization
tailored to long-term use.

Crucially, the success of such methods is highly dependent on the specific context
of interaction. For example, personalizing a robot that engages with multiple users
in a shared environment (such as a school) introduces identity management chal-
lenges, especially when sessions are brief or users frequently change. Group-based

interactions introduce another layer of complexity, as certain personalized behaviors
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may be socially appropriate within one subgroup but awkward or exclusionary in a
mixed setting. Domain-specific considerations also matter: in Physical Health con-
texts, participants may have differing physical capacities that influence how they can
interact with a robot, thereby affecting the kinds of adaptations that are both possi-
ble and meaningful. Similarly, a robot with a limited interaction channel (such as the
nonverbal Paro) offers fewer pathways for personalization compared to a multimodal
platform like NAO, which supports speech, gesture, and visual feedback.

These examples illustrate that there is no universal approach to personalization
and adaptation in long-term HRI. Instead, the design must be carefully shaped by the
robot’s capabilities, the participant profile, the social and physical environment, and
the goals of the interaction. We therefore urge researchers to clearly articulate in their
work which aspects of their personalization and adaptation strategies are context-
specific and which might be generalizable to other domains or populations. Doing so
will enrich the field’s collective understanding of how adaptive robotic systems can

scale, translate, and evolve across long-term, real-world deployments.

2.5.6 Recommendation: Reporting the Full Data & Context

Many of the papers analyzed in this review lacked key information or statistics nec-
essary to characterize the long-term nature of robotic interactions. In session-based
studies, the most frequently omitted details were the number of sessions, the dura-
tion of each session, and the total or average time the participants spent interacting
with the robot. These metrics are critical for the HRI community in assessing how
long-term exposure influences outcomes such as user engagement, habituation, and
dissipation of novelty effects. Where possible, we estimated missing values, such as
average minutes of interaction, for the purposes of this review. However, we strongly
encourage future work to report these metrics consistently and transparently, as they
are essential to allow meaningful comparisons between studies and to advance a cu-
mulative understanding of long-term HRI.

Several of the studies in our corpus were categorized as free-use deployments, in
which users had the freedom to decide when and how to interact with the robot.
These studies offer valuable insights into how people engage with robots in naturalis-
tic settings such as homes and schools, free from the constraints of tightly controlled
experimental protocols. They are particularly useful for understanding which user
demographics are most likely to engage with the robot and under what contextual

conditions these interactions occur. Moreover, free-use studies offer a unique oppor-
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tunity to observe how engagement patterns evolve or diminish over time. While many
of these studies reported the total duration the robot remained in users’ homes, we
found that several lacked crucial contextual details—such as the frequency and du-
ration of daily interactions, the identity of users or family members involved, and
the specific times of day or scenarios in which the robot was used most often. We
encourage future work in this area to systematically capture and report these behav-
ioral patterns, as doing so can greatly enhance our understanding of real-world robot
usage and inform the design of more engaging long-term systems.

One aspect that was rarely reported across studies was whether participants re-
ceived compensation for their involvement. This omission is particularly important
in the context of long-term studies aiming to evaluate sustained user engagement or
compliance. Participant motivation can significantly impact study outcomes: some
individuals may continue to interact with the robot due to genuine interest and en-
gagement, while others may be driven primarily by incentives or a sense of obligation
to the research team. Without transparency in compensation, it becomes difficult to
interpret whether long-term engagement reflects authentic interest or external moti-
vators. We recommend that all long-term HRI studies explicitly state their incen-
tivization strategies, including whether and how participants were compensated, so
readers can better evaluate potential confounding factors and the validity of user

engagement outcomes.

2.5.7 Review Limitations

There are several limitations to our review. Despite employing a rigorous search
methodology, it is likely that some relevant studies were unintentionally excluded.
In particular, our focus was primarily on human-robot interaction conferences and
journals; we did not conduct an extensive search of more traditional robotics venues,
which may contain additional long-term interaction studies. A second limitation
stems from our exclusion criteria: we omitted studies in which the robot did not en-
gage with the same user across time (e.g., museum deployments). While our aim was
to focus on sustained, longitudinal user-robot relationships, there is also considerable
value in examining how robots interact with diverse, changing user populations over
extended deployments. Third, our analysis emphasizes the primary characteristics of
each study, which may obscure important nuances—such as studies that span multi-
ple populations, domains, or include multiple phases that reflect different temporal

dynamics. Finally, we had to estimate certain values for a number of papers, including

64



interaction duration and average session length, due to incomplete reporting. These
estimates, while necessary for comparative analysis, may not fully reflect the original

study design or outcomes.

2.6 Summary

The synthesis of 120 long-term HRI studies presented in this review highlights both
the rapid expansion and the increasing complexity of long-term social robotics re-
search. By adopting a broad perspective, we traced how the field has evolved over
the past two decades to identify key trends in robot autonomy, real-world deployment,
participant demographics, and evaluation methodologies.

These insights directly inform the broader goals of this dissertation. First, the
growing focus on in-situ, long-term deployments underscores the urgent need to design
robots capable of sustaining meaningful social engagement over extended periods—
particularly in dynamic, real-world environments such as homes, schools, and care
facilities. Second, recurring interaction patterns across studies offer promising mod-
els for how robots can scaffold learning, support social and emotional development,
and adapt to individual users through mechanisms such as personalization. Third,
persistent gaps—such as uneven age representation across the lifespan, the scarcity of
workplace-oriented systems, and the absence of standardized tools for assessing long-
term engagement and success—highlight the need for more inclusive, contextually
grounded, and methodologically robust approaches to HRI research.

Together, these findings shape the core motivations of this dissertation. By ad-
dressing critical gaps and building on emerging best practices in long-term HRI, this
work advances the design, development, and deployment of socially intelligent robots
that can meaningfully support users across a range of life stages, contexts, and social
goals. Our later chapters (Chapters 4-6, 8, 9) directly extend the literature. Across
five studies, we examine how robots can be tailored to specialized populations, in-
tegrated into real-world environments, and evaluated through sustained long-term

interaction.
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CHAPTER 3

Robots for Autism Therapy

The previous chapter examined how the field has approached extended interactions
between humans and robots. We highlighted emerging trends, foundational design as-
sumptions, strategies for sustaining engagement with robots, and persistent research
gaps. These insights directly inform the aims of this dissertation across its three
central dimensions: the design of robots for social interaction, their technical devel-
opment, and the contextual factors that enable their successful deployment. While
the prior chapter surveyed a broad range of application domains, from entertainment
to physical health, this chapter focuses specifically on one of those domains: robot-
assisted autism therapy. Here we review more than 300 studies involving the use of
socially assistive robots in autism interventions—not only because autism has been
a prominent focus within robotics research, but also because it offers a uniquely rich
testbed for examining the mechanisms underlying socially mediated learning. Core di-
agnostic features of autism—including difficulties in social communication, emotional
regulation, and adaptive behavior—closely align with the domains where robots are
believed to offer the most therapeutic value. As such, the autism literature provides

critical insights into both the potential and limitations of robot-based interventions.

3.1 Introduction

Formally known as Autism Spectrum Disorder (ASD), autism encompasses a broad
range of neurodevelopmental conditions, marked by significant variability in commu-
nication styles, cognitive profiles, sensory processing, and daily functioning. The op-
erational criteria have evolved over time, sometimes ahead of fully conclusive scientific
consensus and reflecting shifting clinical perspectives [192,193]. Yet, core diagnostic
hallmarks have remained consistent: persistent difficulties in social communication
and interaction, alongside restricted, repetitive patterns of behavior, interests, or
activities [193,194].
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Currently, there is no cure for autism,' but a range of behavioral treatments have
been shown to meaningfully improve quality of life and support greater indepen-
dence. Early intervention programs, in particular, aim to target foundational social
and adaptive skills during critical psychodevelopmental windows [195,196] in order
to maximize the potential for lasting, long-term impact [197]. However, these pro-
grams demand sustained time, expertise, and involvement from families, clinicians,
and educators—making equitable access a persistent challenge [198]. These chal-
lenges are further intensified by the profound heterogeneity of the autism spectrum,
which necessitates highly individualized care. However, such personalized models
are difficult to implement at scale within institutional systems that often default to
standardized protocols (e.g., in public schools [199], child welfare models [200], or
healthcare [201]).

To supplement the level of human involvement required for personalized and read-
ily available care, some approaches have explored the use of non-human partners to
facilitate human-human social interaction, such as in pet-assisted therapy [202,203].
Digital tools such as computer-assisted programs and virtual reality platforms have
also shown potential to support engagement and skill development in individuals with
ASD [204,205]. However, there remains limited research on the specific mechanisms
that make these facilitative interactions effective and on the conditions necessary to
generalize the benefits to real-world engagement with human partners.

Robots, particularly socially assistive robots (SARs), extend this line of inquiry by
offering physically embodied, interactive systems that can engage users in structured,
socially meaningful ways. Unlike virtual agents or passive media, robots occupy
physical space, respond dynamically to user behavior, and can model or reinforce
key social behaviors through real-time interaction. As a result, SARs hold unique
promise as therapeutic tools that not only simulate aspects of human engagement,
but also actively support the acquisition and generalization of social skills across
diverse settings. Research on SARs for autism shows increased engagement, improved
attention regulation, and more appropriate social behavior such as joint attention and

spontaneous imitation when robots are part of the interaction [20,21].

'We acknowledge this phrase is common in clinical discourse but controversial within the autism
community. While it underscores autism’s permanence as a neurodevelopmental condition, it is
also critiqued for pathologizing autism identity and conflicting with neurodiversity perspectives that
emphasize acceptance and accommodation.
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Scope of This Review

This review aims to describe the current state-of-the-art in robots for ASD therapy
and, in doing so, to make the results accessible to a broad interdisciplinary audience.
The field contains many studies with different methods and goals, but the projects
can generally be divided into three connected but discrete phases: designing the in-
tervention goals and structure; engineering the robot’s physical form and behavior to
deliver those goals; and evaluating the outcomes of the robot-assisted intervention. In
particular, intervention design (Section 3.3) focuses on identifying the social, cog-
nitive, or behavioral goals the robot is meant to support: What skills should the robot
support (e.g., joint attention, emotional regulation, social reciprocity), and through
what types of activities or interaction sequences? Should the intervention target in-
dividual users or support peer interaction? How should goals be adapted for different
age groups or cognitive profiles? Robot development (Section 3.4) addresses the
questions of form and function: What appearance, movement, or expressive modali-
ties will best support the intervention? Should the robot display affect through facial
features, body motion, or vocal tone? Will it need arms to gesture, a head to orient,
or mobility to reposition within the environment? How autonomous should it be
and how will it sense, interpret, and respond to user behavior in real time? Finally,
evaluation (Section 3.5) considers whether and how the system achieves its intended
outcomes: Are target behaviors improved over time? Does the robot support engage-
ment, generalization, or retention of skills? How do users, families, and clinicians
perceive its usefulness and appropriateness? These phases are often iterative and
overlapped, but together they form a common structure for designing, developing,
and deploying robots for autism therapy.

This review draws on an extensive collection of peer-reviewed studies that involve
interactions between at least one robot and at least one individual with ASD. We
include studies that present a robot that is physically present and play an active
role in social interaction; studies featuring virtual agents, screen-based representa-
tions, or robots limited to purely mechanical or non-social assistive functions are
excluded. Studies are included only if they explicitly state that participants have a
formal diagnosis of ASD, verified through clinical evaluation or standardized diagnos-
tic instruments such as the DSM-5 or ADOS. Given our inclusion criteria, the final
corpus consists of 304 papers and is listed in Appendix B.

Numerous reviews have examined the use of robots in autism therapy, reflecting

growing interdisciplinary interest on the topic across robotics, psychology, and clinical
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science. Among these, two seminal reviews published in 2012 stand out for their foun-
dational influence. Scassellati et al. [20] offered a robotics-centered perspective that
emphasizes system design, behavior modeling, and early technical challenges. Diehl
et al. [206] assessed clinical utility, critically examining the therapeutic validity and
evidence base of robotic interventions to outline methodological gaps in the litera-
ture. Both reviews concluded that robots showed promise for eliciting social behaviors
and engagement in children with ASD, but that most stu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>