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Abstract

The fields of human-robot interaction (HRI) and robotics at large
have developed around a stable set of assumptions about what
robots are and how they should behave. These assumptions arise
from the constitutive traits of robots, which together shape social
expectations. Over time, these expectations have hardened into tacit
rules that quietly govern research and design: robots should always
engage, help, be productive, remain polite, never lie, never err, and
never model harm. While these prevailing norms have merit, they
also constrain the field’s imagination of the interactions robots can
meaningfully support. We propose rule-breaking as a generative
design strategy and illustrate how deliberate violations—robots
that interrupt, refuse, mislead, or err—can produce interactions that
are more ethical, effective, and socially intelligent. In doing so, we
argue for a more reflexive and imaginative HRI that learns as much
from breaking the rules as from following them.
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1 Introduction

We often imagine robots as the ideal rule-followers—machines that
never lie, never disobey, and that, by their very design, are encoded
to carry out programmed instructions without deviation. Yet, in
human society, strict rule-following can sometimes be the least
ethical choice. We value friends who break confidences to protect us,
admire pioneers who defy norms, respect teachers who challenge us
for our long-term growth, and forgive small violations committed
in service of a greater good. In many ways, we see that principled
rule-breaking can earn trust and sustain moral community.
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Robots, however, are rarely imagined this way. Since Isaac Asi-
mov first introduced his famous “Three Laws of Robotics,” cultural
and technical visions of robots have cast them as bound by unbreak-
able rules: never harm a human, always obey orders, and preserve
themselves when possible [9, 10]. These laws captured the public
imagination and continue to shape how we discuss intelligent ma-
chines. While Asimov’s rules, along with many others developed in
practice to guide robot design [148], were meant to protect humans
by setting ethical boundaries, they also promote and normalize the
idea that the defining virtue of a robot is to “follow the rules”

However, just as blind obedience fails to capture what we value
in human decision-making, it also fails to capture what is distinctive
about robots. Robots are ontologically unstable: they are neither
mere tools nor full social agents, but instead occupy a liminal space
between object and actor. As a result, people perceive and engage
with them as something in between. As we expand on in Section
2, the field of human-robot interaction (HRI) has leveraged this
ambiguity to show how robots can promote human social good.
Because it is widely recognized that robots occupy this liminal
category [99, 112]—and that users project shifting, and sometimes
conflicting, expectations onto them [20, 56, 57, 66]—the question is
not whether robots should break rules, but which rules they should
break, when, and for what purpose. Ontological ambiguity also
means that rules governing appropriate behavior are never absolute:
in one context, acting as a machine may fulfill user expectations,
while in another, the same behavior may be seen as a violation of
expectations for a social partner. For this reason, we argue that
rule-breaking becomes an available, socially legible, and at times
necessary design strategy.

Yet, even within this instability, robots possess unique traits that
stem from their status as engineered artifacts. These constitutive
traits shape the expectations people naturally form about how
robots should behave (Section 3), such as expecting immediate
responsiveness after a command is given, or sameness of motion,
or a reliable presence. Building on this foundation, roboticists make
design choices: sometimes reinforcing the norms suggested by these
traits, and other times deliberately masking them (e.g., by giving a
robot a “personality” that makes mechanistic functions appear more
human-like). Over time, these patterns of expectation and design
have solidified in HRI into a set of common rules for robot behavior.
As we outline in Section 4, these rules constrain design, codify
prevailing research norms, and align robots with familiar social
expectations—yet they are rarely questioned. For example, what
does it look like to build robots that lie productively? Should robots
reject the norm of politeness and dare to interrupt, confront, or even
offend? When should a robot put aside its intrinsic characteristics
of precision, speed, or reliability to intentionally make mistakes?
What does it look like to invert or negotiate the prevailing norms
around robot design?
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This paper identifies and interrogates these unspoken rules. We
begin by tracing how expectations about robot behavior become
embedded in their design, then distill seven rules that currently
govern HRI practice:

Rule 1: Robots should always be willing to engage.

Rule 1: Robots should always offer help.

Rule 1: Robots should always be task-productive.

Rule 1: Robots should always be polite and deferential.
Rule 1: Robots should never withhold information or lie.
Rule 1: Robots should never make mistakes.

Rule 1: Robots should never model harmful behavior.

For each rule, we highlight scenarios where deliberate violations
can produce outcomes that are more effective, ethical, or socially
intelligent—demonstrating how “breaking the rules” can better
serve the social good.

2 Robots are Ontologically Ambiguous

Science fiction would have us believe that robots will take over the
world by force, but reality has shown us that we have welcomed
them into our homes. We have invited them not as mere appliances
like any other toaster or vacuum, but as companions, pets, and
even family members [126]. We have given them nicknames and
dressed them for the changing seasons [28]. Although tools by
design, powering them down can feel less like turning off a device
than betraying a friend [62].

Research confirms that these attachments are more than playful
illusions. Owners have grieved the loss of defunct robots with rituals
resembling funerals [27, 38, 77]. Similar attachments appear in
fieldwork with military robots, where soldiers have been known to
decorate, name, and even risk their own safety to protect machines
they regard as “teammates” [24]. Experimental studies further show
that participants hesitate to “harm” a robot even when reminded
it is only a machine [13]; children readily attribute feelings and
intentions to robotic companions [69]; and toddlers spontaneously
empathize with robots [65] and include them in peer play [132].

Beyond attachment, robots have shown substantial promise as
catalysts for human flourishing [21, 47]. Through robots, people
have expressed their deepest thoughts [16, 143], learned social skills
more effectively [119], regarded their own feelings and actions more
sensitively [37], built healthy mechanisms for emotional regulation
and stress reduction [110], sparked their creativity [3, 4], and grown
in their willingness to learn [35, 107] and courage to fail [70].

Taken together, these examples illustrate that while robots hold
genuine potential for advancing human social good, they simulta-
neously resist simple classification as either mere objects or full
agents. At their core, they are designed artifacts, engineered to
perform tasks with precision and repeatability; yet unlike most
tools, they move, gesture, speak, and even mimic human affect.
Their physical presence and interactive capabilities invite people
to treat them not merely as machines, but as social partners. The
result, then, is not that robots occupy a fixed “in between” state,
but that they continually produce a dynamic ambiguity that shapes
how humans relate to them. People can shift fluidly between these
interpretive frames, sometimes even within the same interaction.
This ambiguity—robots as both objects and agents, treated both
socially and mechanistically—renders them ontologically unstable.
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If robots cannot be neatly classified, then strict rule-based gov-
ernance may naturally fail when interacting with humans. Based
on the interactional demands and context, robots will need to act
like tools (obedient, predictable), other times like partners (socially
sensitive, contextually adaptive). Without acknowledging this insta-
bility, our prescriptions (as users, designers, researchers) risk being
either too shallow (treating them as mere objects) or too overex-
tended (granting them person-like status prematurely). Importantly,
ontological instability does not guarantee that they will or must
break rules, but it does mean that rule-breaking becomes an avail-
able and socially legible design strategy, because the boundaries of
expected or “appropriate” behavior are already unstable.

Still, to understand which violations matter and why, we must
look at the constitutive traits that set robots apart from humans.
The next section explores how these traits, even amid ontological
ambiguity, shape both the expectations people hold and the design
choices researchers make.

3 Constitutive Traits of Robots

Constitutive traits are characteristics that robots possess simply
by virtue of being engineered artifacts. These traits arise not from
specific design choices but from what robots are: machines with
sensors, computation, and actuation operating in the physical world.
Unlike humans, robots are bound by uniquely rigid expectations
that stem from their designed and mechanical nature, even though
their ontological ambiguity invites human-like interpretations. Cru-
cially, such traits appear even in the simplest robotic systems, with
only minimal sensing, processing, and actuation, and they shape
the expectations people reliably hold about how robots should be-
have. The traits outlined below are not intended to be exhaustive
or mutually exclusive. Rather, they offer a conceptual foundation
for understanding why users develop shared expectations of robot
behavior, and why designers often converge on similar norms.

3.1 Reliability of Presence

Robots are reliably present when powered on. Unlike humans, they
do not require sleep, breaks, or recovery. This baseline assumption
shapes both user expectations and design norms. Users anticipate
that robots will always be “on call’—attentive, ready to respond,
and willing to engage without hesitation (e.g., [31, 32, 48, 52, 104]).
A hospital robot, for example, is expected to be immediately re-
sponsive at the press of a button, regardless of the time of day. A
warehouse robot tasked with repetitive picking is assumed to work
around the clock, without complaints or pauses. Even in social
contexts, a robot companion is expected to be instantly available
to play, listen, or interact whenever its user initiates engagement.

Of course, robots have material constraints: they require power,
their hardware wears down, and they can “fatigue” mechanically
through overheating, low battery, or component failure. Yet these
forms of downtime are rarely interpreted as acceptable in the way
human fatigue is. When a phone battery dies, or a household robot
shuts off mid-task, users typically experience it as a breakdown in
dependability rather than a natural cycle of rest. This expectation
shapes design: roboticists are compelled to minimize downtime, au-
tomate recovery, and conceal maintenance to preserve the illusion
of uninterrupted presence (e.g., [34, 116]; as reviewed in [61]).
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3.2 Sameness and Precision

Robots repeat motions or actions with a degree of precision that
humans cannot match. Unlike humans, they are not influenced by
muscle fatigue, shifting moods, or lapses in attention.! As a result,
robots are held to the expectation of responding in the same way
every time, whereas humans are permitted variation, improvisa-
tion, and inconsistency [14, 75, 98, 123]. For people, variation is
interpreted as personality or emotional authenticity; for robots,
consistency is assumed to be their ontological baseline.

This expectation is expressed in various settings. In industrial
contexts, robots are valued precisely because they can weld, cut, or
assemble parts with micron-level precision thousands of times with-
out deviation [41, 82]. In service settings, users expect a delivery
robot to navigate the same route in the same way, or a household
cleaning robot to repeat its programmed motions until the task is
complete (e.g., [48, 71]). In social interaction, a therapy robot is
assumed to respond with the same script or gesture whenever the
same input is given (e.g., [115, 124]).

This also contributes to a persistence of identity: people as-
sume the same robot is the same agent across time, even if its
software is updated or its behaviors are extended [8, 74, 95]. Un-
like humans, whose continuity of self is linked to memory, per-
sonality, and growth, a robot’s persistence is inferred from its re-
peatable performance [78]. Designers may deliberately engineer
variation to simulate personality or different character modes (e.g.,
[67, 83, 85, 111, 145]). Yet such strategies work precisely because
they are read against the backdrop of an underlying assumption:
that a robot’s “true” state is one of sameness and repeatability.

3.3 Responsiveness

Robots are generally expected to take action immediately after
receiving a command or stimulus (e.g., [22, 48, 130]). Unlike humans,
they are not assumed to hesitate, procrastinate, or selectively attend;
their default role is to execute instructions whenever they are given,
whether through programmed code or real-time processing of user
and environmental input (as reviewed in [53]). In daily life, users
anticipate that a voice command to a household robot will trigger
an instant response, that a factory robot will begin moving as soon
as its cycle is initiated, and that a delivery robot will start navigating
the moment a route is assigned. The underlying assumption is not
merely compliance but immediacy: robots should act promptly,
without reluctance or delay.

In HRI experiments, latency (delay between input and response)
is often treated as a point of failure (e.g., [43, 97, 103, 130]; see also
reviews in [1, 128]). However, several studies have framed latency
as a design resource [111], intentionally incorporating pauses as
socially meaningful cues such as deliberation or attentiveness (e.g.,
[2, 105, 125]). Nevertheless, the baseline expectation remains that
robots should respond promptly and without resistance, whereas
with humans, hesitation or delay is tolerated and often valued as
evidence of independent judgment or thoughtful consideration.

1Robots do vary due to noise, sensor drift, mechanical tolerance, and stochasticity.
Perfect repetition, or the expression of many of these traits, is more an idealization
than an inherent truth. In Section 3.6, we discuss how contending with real-world,
physical constraints is also a constitutive property of robots.
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3.4 Perceived Objectivity

At their core, robots do not possess human social biases, loyal-
ties, or emotional residues (though biases can certainly be intro-
duced through training data, design decisions, or interaction norms;
[59, 133, 139, 148], and reviewed in [94]). Their default stance is
impartial execution. People, therefore, expect robots to be objec-
tive and fair, in contrast to humans, who are assumed to carry
perspectives, loyalties, and biases that manifest as preferences and
favorites [137]. Although definitions of “fairness” are varied and
debated [25], here instead we emphasize the standard to which
robots are expected to meet (that of objectivity) and that to which
humans are expected (fair, but allowed partiality).

This expectation is evident across domains. In judging competi-
tions, it is assumed a robot referee would apply rules evenly and
without favoritism, while human referees are often accused of bias
or leniency (e.g., [39, 135, 144]). In customer service, a scheduling ro-
bot is expected to assign slots strictly by availability, while a human
receptionist might “bend the rules” for a friend or sympathetic case
(e.g., [147]). In finance, algorithmic trading systems are assumed
to execute orders with dispassionate precision, whereas humans
hesitate, speculate, or are swayed by emotion (e.g., [54, 87]).

Robots are thus received as neutral actors: they take in signal
input (speech, touch, behavior, or environmental cues) completely
and without evaluative judgment by default. Even when qualities
such as personality, judgment, or partiality are engineered (e.g.,
through personalization or adaptation techniques; or structured,
rule-based procedures; [67, 114, 145]), these are still held to the
standard of objective decisions rather than subjective preference.

3.5 Traceable Causality

Robots are not expected to set their own goals, but to execute those
designed or assigned to them (e.g., in the Al- or value-alignment
tradition, [5, 49, 117]). Humans, on the contrary, are assumed to
possess self-determined behaviors that are not reducible to external
design. As machines, a robot’s behavior can, in principle, be traced
through a chain of statistical mappings, rules, or control logic that
connect sensor input to actuator output. This suggests that robotic
behavior is generally assumed to be explicable by design, even when
the underlying mechanisms are technically complex [33, 121, 150].2
In industrial robotics, an assembly-line arm can be inspected
through control code and sensor logs to explain exactly why a
weld occurred in a particular location. In autonomous vehicles, data
traces can reconstruct why the car braked late or failed to detect
a pedestrian—engineers can review frames, model outputs, and
decision thresholds. In healthcare, a surgical robot’s sequence of
cuts and movements can be replayed step by step, offering an audit
trail unavailable in human surgery. In all these cases, robots are
treated as legible agents, with the presumption that their actions
can be reconstructed and justified through technical means.
Humans are accepted as opaque. We recognize that people may
not know, or cannot fully articulate, why they acted as they did
[19, 122]. A coach says they acted on “gut instinct,” a friend admits “I

2This expectation of traceability endures even as modern systems increasingly rely on
black-box methods such as foundation models. In such cases, the exact causal chain
may be too complex or inaccessible to provide a satisfying explanation, even if it exists
in principle [40, 89].
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don’t know why I did that,” or a driver makes a sudden lane change
without reason. With robots, however, opacity is rarely tolerated: if
an explanation cannot be produced, the system may be viewed as
erroneous, untrustworthy, or unacceptably “black-boxed” [23, 150].

3.6 The Role of Embodiment

Robots occupy space, obey physical laws, and act through a material
body. Unlike disembodied technology, robots cannot be separated
from their embodiment: they move, collide, and gesture in ways
that are constrained by mass, shape, and mechanics. This shapes
user expectations—people anticipate that a robot will be visible,
take up space, and exert force through its actions [29]. Embodi-
ment also makes robot behavior more legible, since movement and
presence can be directly observed [41]. At the same time, it brings
expectations of safety, durability, and appropriate spatial conduct
not applied to purely virtual agents [118, 129].

We do not treat embodiment as a separate “trait” but a founda-
tional characteristic that makes the other traits legible in interaction.
It renders presence physical and visible (Section 3.1): a robot is not
merely conceptually “available” like software but literally occu-
pies space, amplifying its perceived dependability and making its
absence more salient. It makes sameness observable (Section 3.2):
repeated motions, paths, or gestures reinforce stability, while even
small variations (e.g., a wobbly gait) become salient through visible
deviation. It makes responsiveness tangible (Section 3.3): a robot’s
physical movements (turning, grasping, rerouting) communicate
instant responses in a way that purely digital systems cannot; while
delays become more apparent because they are spatial and temporal.
It grounds traceability in cause-and-effect perception (Section 3.5).
Users can see a sensor trigger (e.g., a bump, a face detected) and
watch the corresponding actuation (a turn, a wave). The physical
body provides a visible chain between input and output, making
the assumption of behavioral explainability more intuitive.

4 Expectations, Design Choices, and Rules

In the previous section, we set aside specific design choices to focus
on the constitutive traits that are intrinsic to robots—qualities
present even in their simplest forms of sensing and actuation. Even
minimal systems, such as a light-following robot that turns toward
a flashlight, a bump-and-go toy car that changes direction upon col-
lision, or an industrial arm performing a repetitive pick-and-place
routine, exhibit these traits and are therefore subject to the natural
social expectations people hold about how robots should behave.
Robots are assumed to be reliably present, consistent in behavior,
immediately responsive to sensor input, act without subjective
partiality, and traceable in their input-output logic, in principle.

These traits form the baseline affordances upon which we, as
roboticists, design. Through design choices, we either reinforce
or mask them. For instance, the expectation of sameness can be
strengthened through repeated cues—such as a robot that always
delivers a safety message in the same tone—or softened by intro-
ducing subtle variations in gesture, timing, or wording to evoke
spontaneity. Similarly, responsiveness can be amplified, as when
a robot vacuum immediately reroutes upon detecting an obstacle,
or deliberately attenuated, as when a social robot pauses before
responding to signal reflection.
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HRI research systematically examines how such design varia-
tions shape experience [29, 53]. Studies have compared robots to
screen-based avatars or disembodied assistants (e.g., [60, 86, 134,
140]), explored gradients of sociality from toy-like to human-like
agents (e.g., [12, 73, 119]), and investigated how inherent traits can
be exaggerated or masked to alter perception. Collectively, this
body of work shows that reinforcing or relaxing these expectations
profoundly affects the quality of interaction.

Yet, across this body of work, certain expectations and choices
have congealed into rules that are rarely challenged. Robots are al-
most always designed to comply with user commands, be obedient,
maintain predictability, and behave in ways that align with familiar
social norms. Such rules are not formally codified but emerge as
prevailing norms across robotics literature. Many studies test sub-
tle manipulations of timing, adaptation, or personality but do so
within the boundaries of these unspoken rules. Deliberately break-
ing them—for example, by designing robots that resist, withhold, or
subvert user expectations—remains rare, yet doing so could reveal
new possibilities for interaction.

5 Rules to Break

If these unspoken rules shape how robots are built and studied, then
breaking them offers a way to see the field (and its assumptions)
more clearly. Rather than treating these rules as fixed constraints,
we approach them as design materials: norms that can be bent,
inverted, or suspended to reveal novel forms of interaction. In what
follows, we identify several rules that underlie HRI and explore the
new opportunities that emerge when they are deliberately broken.

Rule 1: Robots Should Always Be Willing to
Engage
Robotics research often features systems that are always “on,” atten-
tive, and ready to interact [55]. This ideal of continuous availability
has become an tacit standard. We measure success by indicators
such as sustained engagement, longer interaction time, greater
up-time, improved battery performance, and fewer instances of
users powering down the system or putting it away (as reviewed
in [81, 93]). Then, by optimizing for these markers of success, the
goal of continuous availability is thus embedded in how we design
robots themselves: with eyes that continually scan the room, con-
stant motion that signal perpetual “aliveness,” never appearing to
truly idle or be “off” (e.g., [6, 26, 103, 138]). Availability has been ex-
pressed through proactive behaviors, such as autonomously tidying
up clutter in a home or navigating a facility to collect environmen-
tal data [81], and in reactive responses, like always responding to
user queries or behavioral prompts [17]. Systems that fail to sustain
this responsiveness are often seen as falling short [34, 61, 136, 141].
Continuous availability is a reasonable design norm: users never
have to wait or wonder if the robot is “on” to respond [34, 101]. This
fosters the trait of reliable presence (Section 3.1) and aligns with
the natural expectation that a service-oriented, interactive system
should always be ready and willing to engage. However, continuous
availability is not always optimal—and in many real-world contexts,
it can be socially inappropriate, cognitively exhausting, or simply
unwelcome [136]. At times, it may be more effective for a robot to
power down, “sleep,” or deliberately ignore interaction attempts.
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In human-human interaction, selective availability is a socially
meaningful skill, where strategic non-attention reflects judgment
rather than inattention. Teachers, for instance, withhold responses
to off-task behavior, using silence as a classroom management tool
to avoid rewarding disruption [18, 92]. Parents likewise may ig-
nore a child’s tantrum so as not to reinforce undesirable behaviors
[72]. Therapists employ silence to create reflective space, signal-
ing respect and allowing clients to process emotions [58]. Even in
everyday conversations among friends or colleagues, a pause or
non-response can communicate empathy, restraint, or deference
to social norms [102, 146]. Rather than being a radical departure
from the norm, strategic ignoring represents an established, socially
meaningful practice that robots may also benefit from adopting.

In fact, we can imagine several compelling contexts where delib-
erate non-engagement by a robot is the socially intelligent choice.
In healthcare, for example, a companion robot stationed on a hos-
pital ward may need to ignore low-priority social bids to preserve
patient rest or prioritize safety. In a classroom, a tutoring robot
that answers every whispered off-task remark risks reinforcing
disruption, whereas withholding a response can maintain focus for
the whole group. Similarly, when users test boundaries by issuing
inappropriate or repetitive prompts, selective non-responsiveness
can serve as a form of behavioral shaping. Everyday interactions
provide additional lessons. When speech is ambient or not directed
at the robot, remaining silent may be more respectful than intrud-
ing (e.g., [51, 110, 111])—just as it would be more considerate for a
robot to “look away” when someone takes a private phone call.

This discernment becomes most salient in long-term deploy-
ments, where robots live alongside users in their everyday environ-
ments. The home, for instance, is a deeply personal space: just as it
would be inappropriate for a human therapist to enter someone’s
home uninvited and announce that it is time for therapy (even
on a predefined schedule), it is likely problematic for a robot to
do so [108, 110, 111]. Restraint matters in public settings as well.
For example, a museum guide robot that chooses not to answer
questions during a reflective art exhibit helps preserve the contem-
plative atmosphere that human curators intentionally create. These
scenarios illustrate a broader principle: robots must be equipped
not only to engage, but also to discern when non-response is the
more socially intelligent action. Rather than treating always-on,
continuous availability as the ideal, roboticists should consider
that strategic non-responsiveness can be, at times, more socially
appropriate, cognitively sustainable, and behaviorally effective.

Rule 2: Robots Should Always Offer Help

Helping is a fundamental dynamic of human-human relationships.
Yet, the act of offering help can sometimes be met with resistance
[15, 120]. For example, what goes on and what goes wrong when
one offers to help a friend and is rudely rebuffed? It has been said
that the word “help” itself comes up primarily when someone is
described to have not been helpful [109, 120].

Robots are built to assist people. In contrast to human-human
dynamics, it is generally assumed that robots should be readily avail-
able when needed and always willing to help its users [30, 42, 63].
We challenge this prevailing paradigm and can imagine situations
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where a robot should opt to withhold help, even when it is tech-
nically capable of assisting. For instance, in rehabilitation, with-
holding help can encourage independence—such as when a robot
observes a user struggling slightly to stand but allows them to com-
plete the motion on their own to support intrinsically motivated
effort and learning [100]. A restaurant robot observes a waitress
dropping a fork but refrains from offering help, recognizing that
stepping in would interrupt the flow of professional service and
draw attention. In group settings, a robot may refrain from answer-
ing to give someone a chance to recall information independently.
Robots may also withhold assistance when user preferences are
known (e.g., a user who prefers manual control over cooking tasks;
[44, 149]) or when the context is ambiguous and premature inter-
vention could cause confusion or offense [109]. In these cases, not
helping is not a limitation of the robot, but a strategic behavior
aligned with social, emotional, or pedagogical goals. This presents
an opportunity for HRI research to examine how robots can discern
when it is appropriate to offer or withhold assistance to users.

Rule 3: Robots Should Always Be Task-Productive

Robots are often evaluated by their efficiency and task-oriented
success [128]. However, success is not always defined purely in
terms of functional task performance. For instance, some studies
define success as increasing the amount of eye contact users make
with the robot, treating it as a proxy for engagement (e.g., [68,
79, 88, 93]). Conversational therapy systems may aim to maximize
speaking time as an indicator of therapeutic progress [36, 46], while
service robots often optimize for metrics such as task completion
time or the number of customers served [128]. Nevertheless, these
benchmarks reflect broader societal values that emphasize output,
speed, and optimization in relation to functional task performance.

However, in many social and collaborative contexts, rigid adher-
ence to task goals may inadvertently undermine relational dynam-
ics or overlook the importance of small, seemingly “unproductive”
moments that contribute to trust, rapport, and long-term accep-
tance. Consider, in a healthcare setting, a robot that rushes through
exercises to maximize repetitions may be less effective than one
that pauses to offer encouragement, even if this behavior reduces
raw efficiency. In education, a tutoring robot that occasionally di-
gresses with small talk or playful gestures may support sustained
engagement better than one that delivers information as quickly as
possible. In industrial contexts, robots designed only for through-
put may ignore opportunities to foster camaraderie with human
collaborators—for instance, by initiating light conversation on an
assembly line, which could reduce monotony and stress [142].

These examples highlight a broader tension: optimization for
immediate task performance can come at the expense of social
value [106]. A robot that completes tasks flawlessly but leaves users
stressed or alienated has failed in a deeper sense. Small, seemingly
inefficient behaviors—pauses, acknowledgments, digressions—often
carry disproportionate weight in human relationships. They can
signal attentiveness, empathy, and respect. By ignoring these di-
mensions, success metrics risk flattening robots into narrow tools
rather than potential partners in interaction [11].

While it may not always translate directly to immediate func-
tional task outcomes, such interactions could foster a more positive
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work environment, reduce stress, and support human well-being.
Future work should reconsider what it means for a robot to be
successful, expanding evaluation criteria to include social value and
relational outcomes, not just efficiency. Reframing success around
both productivity and social value leverages robots’ duality as ar-
tifacts and as partners (Section 2), and points toward designs that
sustain meaningful human-robot relationships over time.

Rule 4: Robots Should Always Be Polite and
Deferential

We typically design robots to be polite (e.g., [50, 80, 84, 91, 113, 127]).
Researchers incorporate system-level rules to avoid interrupting,
contradicting, or confronting users, as a way of allowing the robot to
signal friendliness and minimize social friction. However, politeness
and deference can be counterproductive. For example, consider a
rule that restricts the robot from interrupting a user while they are
speaking—a generally sound and polite constraint. However, in a
situation where the user begins to spiral into a repetitive or self-
deprecating monologue, the rule may need to be relaxed to allow a
well-timed, gentle interruption that redirects the user constructively
(e.g., [108]). In this case, the rule’s intent (respecting user agency)
must be weighed against its current utility and possible harm.

In educational settings, a robot tutor may need to interrupt a stu-
dent mid-explanation to correct a fundamental misunderstanding
before it becomes entrenched. In healthcare, a robot reminding a
patient about medication adherence may need to persist or escalate
its tone if polite prompting is repeatedly ignored. Even in customer
service, a robot may need to push back gently when a user makes an
unreasonable request, such as asking it to perform actions either in-
appropriate or outside its scope. In these cases, assertiveness is not
a breakdown in politeness but rather a demonstration of situational
awareness and a commitment to supporting human goals responsi-
bly. In sum, HRI research should explore how robots can balance
politeness with assertiveness, developing context-aware strategies
that allow them to interrupt, redirect, and disagree meaningfully.

Rule 5: Robots Should Never Withhold
Information or Lie

It is natural to expect that robots should always provide complete
and accurate information when asked. This expectation reflects
a view of robots as transparent, factual tools designed to reduce
uncertainty and deliver immediate answers. However, in socially
and ethically complex situations, unconditional disclosure can be
inappropriate or even dangerous. For example, in elder care con-
texts, a robot supporting a person with dementia may know where
the car keys are but choose to withhold that information if there
is reason to believe the person may attempt to drive unsafely or
leave the house without supervision. In this case, withholding is a
protective measure that prioritizes the user’s physical safety over
immediate compliance. Similarly, a therapeutic robot may withhold
responses that could cause distress, or deliberately delay factual
answers in educational contexts to promote problem-solving.
There are cases in which providing partial information is more
appropriate than full disclosure. For instance, a healthcare robot
might tell a patient that their test results are under review without
immediately revealing abnormal findings, allowing a physician to

Ramnauth & Scassellati

communicate the results in a controlled clinical setting. In rare
but critical situations, limited forms of strategic deception may
even be ethically justified. For example, a robot might report that
building exits are temporarily inaccessible during a lockdown to
prevent individuals from moving toward danger. These examples
demonstrate that rigid truth-telling can be socially and ethically
insufficient. Future work should examine how robots can make
context-sensitive decisions about when to disclose, withhold, or
alter information in ways that prioritize safety, well-being, and
appropriate delegation of sensitive communication.

Rule 6: Robots Should Never Make Mistakes

Robots are often designed to appear competent, consistent, and
error-free—reflecting the belief that reliability and precision are
core to their value as machines (Sections 3.1 and 3.2). As a result,
mistakes are typically treated as design flaws to be avoided or cor-
rected [76, 96]. However, intentional errors can serve important
relational and pedagogical functions. For example, in educational
settings, a robot that makes a simple mistake while solving a prob-
lem may invite the user to correct it and reinforces understanding
through a “learning-by-teaching” paradigm [45]. A therapy robot
designed for children with motor difficulties can occasionally drop
an object or move clumsily to create opportunities for the child
to “help” Such moments can foster empathy, reduce pressure for
perfection, and make both the therapy and the robot itself more
approachable. In another case, a robot may choose to lose at a game
on purpose to boost a child’s confidence or encourage continued
engagement. Here, these small, human-like errors can build rapport
by making the robot seem more relatable, fallible, and less intimidat-
ing. Future research should examine how robots can strategically
make mistakes to support social, emotional, and learning outcomes
without undermining user confidence in the system.

Rule 7: Robots Should Never Model Harmful
Behavior

Robots are typically designed to avoid behaviors that are per-
ceived as aggressive, exclusionary, or morally inappropriate—such
as mocking, taunting, or bullying. Such actions are widely regarded
unacceptable among humans and, by extension, are excluded from
robotic conduct to maintain trust and psychological safety. However,
in controlled settings, robots can strategically model norm-violating
behavior to promote reflection and prosocial action. For instance,
prior work has used two robots to simulate a bullying scenario,
where one robot teases or excludes the other, to study how children
respond as bystanders [131]. These scenarios are designed not to
normalize bullying, but to prompt users to recognize mistreatment
and practice appropriate intervention strategies. Another example
may be a training robot for emergency response that simulates
inflicting harm (e.g., applying too much force) to allow trainees
to confront and analyze moral responses to machine-caused in-
jury, without real danger. By witnessing norm violations enacted
by robots, users are given a safe, repeatable context in which to
explore empathy, fairness, and the moral imperative to speak up.
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6 Discussion

We began this paper by outlining constitutive traits of robots. De-
spite the ontological ambiguity surrounding how robots are in-
terpreted in human interaction, we argue that unique traits arise
from their status as machines. Around these traits, humans intu-
itively build assumptions that shape how robots are perceived, how
they are valued, how they are designed, and how HRI research is
conducted. The rules we later propose for breaking reflect prevail-
ing norms in our research community. We argue that these norms
should be challenged, since breaking them may in some cases lead
to more socially productive outcomes.

One might argue that a “rule with exceptions” is best understood
as a single, more complex rule, rather than a rule plus its violation.
However, the pattern of HRI literature demonstrates that, though
these rules are not rigid or explicitly codified, they are generally
respected and rarely defied. Throughout this paper, we referenced
relevant reviews and studies to convey the broader acceptance of
these assumptions. Therefore, our motivation for this paper is more
to challenge the prevailing norms of HRI research than simply
advocate designing robots that follow complex or conditional rules.

6.1 Further Betraying Robotic Traits

Our two lists—the constitutive traits (Section 3) and the rules to
break (Section 5)—are not exhaustive or mutually exclusive. Rather,
they are broad sketches: one highlights expectations intrinsic to
robots, while the other calls attention to research norms that merit
questioning. Although our paper does not directly map each con-
stitutive trait to each rule, their connections are apparent and over-
lapping in several cases. For instance, Rule 1 (Robots Should Always
Be Willing to Engage) arises from robots’ Reliability of Presence.
Similarly, Rule 3 (Robots Should Always Be Task Productive) can be
traced to the traits of Sameness and Precision and Responsiveness:
robots’ precision and consistency lead us to value their functional
utility, judge their success by task completion, and treat sociability
as a trade-off against efficiency. Accordingly, Rule 6 (Robots Should
Never Make Mistakes) also stems from the expectation of Sameness.

Given this, we can explore how to design robots that subvert their
intrinsic traits to yield socially productive outcomes. For example,
we can subvert the trait of Sameness into an idea of generative in-
consistency. Since robots are rapidly deployed into personal spaces
for longer-term use, we can imagine robots that live and thus “grow”
alongside us. Robots that age, degrade, or evolve, showing wear
not as a mechanical failure but as identity. Practically, this might
take the form of a robot for children that begins with a higher-
pitched voice and limited vocabulary, then gradually “matures”
into an adult-like voice with richer prosody and more advanced
communicative reasoning as the user enters adulthood. Similarly,
a robot designed for young families might initially engage in en-
ergetic, playful group interactions, then gradually adopt calmer,
more focused dyadic behaviors as the children grow older. Here,
the robot retains its social utility by disrupting assumptions related
to Sameness, allowing it to remain relevant rather than outgrown.

Across constitutive traits, robots are typically designed to mini-
mize awkwardness: they respond quickly, act consistently, remain
neutral, embody space predictably, and withdraw smoothly when
tasks are complete. Purposefully designing awkward behaviors
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destabilizes these assumptions in subtle but socially meaningful
ways. For instance, it may be counterintuitive to design robots that
stand too close or face the wrong direction. However, we can imag-
ine a conference robot that deliberately positions itself in a “bad”
spot to encourage attendees to physically rearrange and interact
with one another. Exploring how to design such interactions could
reveal new insights into the spatial politics of bodies, group dynam-
ics, and social bonding through collective negotiation. Similarly, in
therapy for individuals with memory impairments, a companion
robot could use “playful incongruity” by sharing implausible or
incorrect anecdotes. This behavior can stimulate memory recall and
reasoning by prompting users to detect what feels “out of place” In
these cases, awkwardness becomes a resource to reconfigure social
interaction, invite reflection, and deepen cognitive engagement.

6.2 Breaking the “More Human-Like” Rule

So far, we have described rule-breaking mainly as a departure from
robots’ machine-like traits—adding variation, hesitation, or defiance
to soften their mechanical character. In this view, rule-breaking
serves to make robots feel more human-like. This perspective is
intuitive: it reflects the observation that humans routinely bend or
break social norms; robots that do so may therefore appear more
authentic, socially attuned, and relatable.

However, breaking rules need not always mean humanizing
robots. In some contexts, the more meaningful “rule break” is to
resist the pull of over-socialization and instead preserve the very
machine-like traits that are sometimes treated as limitations. A
robot that insists on repeating a warning in the same tone, that acts
without hesitation, or that maintains rigid impartiality may seem
overly mechanical in casual social interaction, but in domains like
surgery, aviation, or industrial safety, those same qualities are what
inspire confidence and trust. Here, these traits become the virtues
of robots, not available with humans (Section 3).

Acknowledging this duality helps clarify the scope of our argu-
ment. Rule-breaking is not a unidirectional path toward greater
human-likeness, nor is it a blanket rejection of the traits that de-
fine machines. Instead, it can take two forms: (1) breaking rules to
align more closely with human social practice, or (2) breaking rules
by reaffirming and amplifying machine-like qualities in contexts
where those qualities are socially or functionally valuable.

Furthermore, this raises the question of whether a robot can
become “more social” without becoming “more human-like.” These
concepts are often conflated in HRI research, although they do not
always need to align. We can imagine how a robot’s sociality can
derive, not from imitation of human traits, but from its capacity to
behave in ways that humans cannot or would not enact themselves.

Consider a robot embedded in a workplace or classroom over
several years. By tracking interaction patterns (who collaborates,
who is left out), it could reorganize groups or suggest new partner-
ships. Humans rarely sustain impartial, long-term social memory at
such scale, yet this form of mediation could cultivate more equitable
participation. In a brainstorming session, people often converge
prematurely on one idea [64, 90]. A robot, by contrast, could intro-
duce a deliberately contradictory or improbable suggestion based
on lateral semantic association—something no person would se-
riously propose. Though nonhuman in logic, such contributions
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might provoke novel connections and richer group discussion. In
shared environments, collective stress or fatigue often accumu-
lates invisibly. An ambient robot could monitor environmental cues
(noise, tone, activity) and adjust lighting, sound, or scent to gen-
tly regulate the collective mood. Acting as a social barometer, it
represents group-level emotional states that individuals intuitively
sense but cannot express in real time. Across these cases, robots
function as agents of social facilitation rather than social imitation,
producing new, nonhuman forms of social intelligence.

Lastly, we did not treat embodiment as a distinct trait, as it is
core to what defines a robot and is also shared with humans. Yet,
embodiment critically mediates the expression of all other traits
(Section 3.6), and can manifest in uniquely robotic ways. Robots are
often imagined as cold, rigid, or plastic, yet they could be designed
to subvert this material expectation in ways that generate new
forms of social value. For example, a social robot might expand
or inflate to become physically larger in group settings—drawing
attention to quieter participants, redistributing focus, or signaling a
need for collective attention. Similarly, a therapy robot could vary
its material properties, becoming soft, warm, and pliable during
moments of comfort, then hardening when idle or unavailable
outside of the therapy context (e.g., expressing a clear break of Rule
1). Such shifts could provide tactile cues of safety and care during
interaction while maintaining clear boundaries beyond it.

6.3 Ethics Prohibitions

In this paper, we used “rules” in a broad sense to encompasses
seven examples, but it is useful to distinguish several layers that
reveal different kinds of rules robots may break. Constitutive traits
are the inherent machine-like properties of robots (e.g., sameness,
responsiveness, traceability) that give rise to user expectations. So-
cial expectations are the intuitive assumptions people hold about
robots based on those traits (e.g., that robots will not hesitate or
defy user commands). Design norms are the engineering conven-
tions that codify these expectations into practice (e.g., building
systems that always respond or follow predictable motion paths;
else, departures from such standards are viewed as design flaws or
system errors). Together, these three layers define a practical space
where rule-breaking in HRI can occur. Our interest lies not merely
in whether robots should break such rules, but in which rules they
might productively violate, when, and for what purpose.

Beyond these, however, lies a distinct category of ethical prohi-
bitions: the conceptual rules that constrain robots absolutely (e.g.,
never harm, never deceive, never override human agency). These
prohibitions define the moral limits within which productive rule-
breaking can occur. Recognizing this distinction clarifies that our
argument is not for unbounded disobedience, but for thoughtful
design strategies that balance creativity with ethical constraint.
Rule-breaking can occur at any of these four layers, but with dif-
ferent implications: playful or deliberate breaks may be productive
at the levels of expectation or design, whereas violating ethical
prohibitions risks undermining safety and trust.

In ethics, truly absolute prohibitions are almost always negative
(never do X), rather than positive mandates (always do Y). For
robotics, this asymmetry is important. Negative rules do not dictate
what the robot should do in every situation, but they sharply delimit
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the range of acceptable actions. In this sense, negative absolutes
reduce the action space without fully determining it. By contrast,
attempting to impose absolute positive rules on robots—for example,
“always tell the truth” or “always act in the user’s best interest”—
introduces ambiguity. What counts as truth? How do we define the
user’s “best interest” in cases of conflicting needs or goals? Positive
mandates require contextual interpretation and value judgments,
which cannot be captured by exceptionless formulations.

This framing suggests that“absolute rules” robots should “never
break” will rarely be prescriptive. Instead, they will be protective
constraints: ethical boundaries that ensure safety, transparency, and
respect for autonomy, while leaving space for flexibility, adaptation,
and even productive rule-breaking within those limits. Acknowledg-
ing where rules must remain inviolable does not weaken the case
for rule-breaking; it strengthens it by clarifying where responsible
experimentation can and should occur.

Against this backdrop, there are several widely recognized non-
negotiables in HRI [7, 148]. Chief among them is the imperative that
robots must never cause physical harm to humans. This principle is
reminiscent of Asimov’s First Law but also grounded in real-world
engineering ethics and legal frameworks. A robot that directly
injures people undermines the baseline of safety upon which all
other forms of trust are built. Even playful or socially enriching
behaviors lose meaning if physical safety cannot be assumed.

Building on this foundation, we propose an additional non-
negotiable: a robot should never conceal its purpose. Mystery about
how a robot functions (opacity about its sensors, algorithms, or
control systems) can be acceptable, even desirable in contexts like
art or entertainment. However, mystery about why a robot behaves
in a certain way (i.e., what its goals are, who it serves, and what
outcomes it seeks) quickly undermines trust. Users must be able
to discern a robot’s purpose in order to make informed decisions
about how to interact with it, what boundaries to set, and whether
or not to rely on it. Transparency of intent is thus not a design
courtesy, but a prerequisite for ethical and trustworthy HRIL

7 Conclusion

Robots have long been framed as ideal rule-followers, but we argue
that strict obedience can limit their potential to support human
social good. By outlining prevailing norms in HRI and showing
how deliberately breaking them can yield more effective or morally
attuned outcomes, we suggest that rule-breaking can be a purpose-
ful design strategy. Embracing the idea of robots that resist, deceive,
or err in contextually appropriate ways allows designers to create
systems that engage more authentically with humans and reflect
the complex, situational ethics that govern social life itself.
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